
Stanza by Example

Patrick S. Li

July 2, 2017

1

Stanza by Example is an introductory book for teaching readers how to program in the L.B. Stanza
programming language. Readers are assumed to have basic programming experience, at about the level
required to implement and understand a basic sorting algorithm. This book is not a reference book, and is
meant to be read in order from front to back. The material is written expecting readers to follow along
with the coding examples and to the suggested exercises. By following the book, readers will gain a
thorough understanding of Stanza’s fundamental mechanisms and coding style.

For absolute beginners to programming, the pace of the first chapter will feel a bit fast, and readers are
encouraged to take their time to understand and experiment with the examples. When I was young, I
taught myself to program by reading Beginning Java 2 by Ivor Horton, and one of the goals of this book is
to help beginners get started with programming in the same way that Mr. Horton’s book has helped me.
Once you get the hang of it, programming is an extremely creative and satisfying endeavor.

I hope you enjoy the book, and Stanza.

-Patrick

Contents

1 Getting Started 5
1.1 Get Stanza . 5
1.2 Write a Program . 7

2 The Very Basics 9
2.1 Project Framework . 9
2.2 Printing Simple Messages . 10
2.3 Lexical Structure . 12
2.4 Comments . 14
2.5 Operators . 14
2.6 Values . 15
2.7 Variables . 16
2.8 Functions . 18
2.9 Comparisons . 21
2.10 If Expressions . 22
2.11 Expression Sequences . 24
2.12 Structure Through Indentation . 24
2.13 While Loops . 25
2.14 For ”Loops” . 25
2.15 Labeled Scopes . 26
2.16 Scopes and the Let Expression . 28
2.17 Arrays . 29
2.18 Tuples . 31
2.19 Basic Types . 31
2.20 Structs . 32
2.21 Exercises . 33

3 The Less Basic 35
3.1 More about Structs . 35
3.2 The Match Expression . 36
3.3 The Is Expression . 40
3.4 Casts . 40
3.5 Deep Casts . 41
3.6 Operations on Strings . 42
3.7 Operations on Tuples . 43
3.8 Packages . 45
3.9 Function Overloading . 47
3.10 Operator Mapping . 47
3.11 Vectors . 49
3.12 HashTables . 50
3.13 KeyValue Pairs . 52
3.14 For Loops over Sequences . 52

2

CONTENTS 3

3.15 Extended Example: Complex Number Package . 54

4 Architecting Programs 57
4.1 A Shape Library . 57
4.2 Creating a New Shape . 58
4.3 Subtyping . 59
4.4 Multis and Methods . 61
4.5 Default Methods . 64
4.6 Underneath the Hood . 65
4.7 Intersection Types . 66
4.8 The Flexibility of Functions . 67
4.9 Fundamental and Derived Operations . 69
4.10 Multiple Dispatch . 69
4.11 Ambiguous Methods . 71
4.12 Revisiting Print . 72
4.13 The New Expression . 72
4.14 Constructor Functions . 75
4.15 Revisiting Defstruct . 77

5 Programming with First-Class Functions 78
5.1 Nested Functions . 78
5.2 Functions as Arguments . 81
5.3 Functions as Return Values . 84
5.4 Core Library Functions . 85
5.5 Anonymous Functions . 89
5.6 The For Construct . 92
5.7 Stanza Idioms . 93
5.8 Tail Calls . 95
5.9 Revisiting While . 97

6 Programming with Sequences 98
6.1 Fundamental Operations . 98
6.2 Writing a Sequence Function . 99
6.3 Lazy Sequences . 101
6.4 Using The Sequence Library . 102
6.5 Collection versus Seqable . 107
6.6 Revisiting Stack . 108

7 Programming with Immutable Datastructures 111
7.1 Lists . 112
7.2 Example: Coin Counting . 113
7.3 List Library . 114
7.4 Example: More Coin Counting . 116
7.5 Extended Example: Automatic Differentiation . 118

8 Parametric Polymorphism 126
8.1 The Need for Polymorphism . 126
8.2 Explicit Type Arguments . 128
8.3 Captured Type Arguments . 129
8.4 Parametric Types . 133
8.5 Match Expressions and Type Erasure . 137
8.6 Revisiting Stack . 138

9 Advanced Control Flow 141
9.1 First Class Labeled Scopes . 141

CONTENTS 4

9.2 Dynamic Wind . 143
9.3 Dynamically Scoped Variables . 144
9.4 Attempts and Failures . 145
9.5 Example: S-Expression Parser . 146
9.6 Exception Handling . 149
9.7 Generators . 151
9.8 Coroutines . 154
9.9 Example: Key Listener . 158

10 Stanza’s Type System 163
10.1 Kinds of Types . 163
10.2 The Subtype Relation . 163
10.3 Ground Types . 164
10.4 Parametric Types . 165
10.5 Tuple Types . 166
10.6 Function Types . 167
10.7 Union Types . 168
10.8 Intersection Types . 169
10.9 The Void Type . 170
10.10The Unknown Type . 170

11 Calling Foreign Functions 171
11.1 Writing a C Function . 171
11.2 Calling our C Function . 172
11.3 Calling LoStanza from Stanza . 174
11.4 LoStanza Types . 176
11.5 External Global Variables . 180
11.6 Function Pointers . 181
11.7 The Address Operator . 182
11.8 Calling LoStanza from C . 183
11.9 Passing Callbacks to C . 184

12 Appendix 186
12.1 Stanza Compiler Options . 186
12.2 The When Expression . 188
12.3 The Where Expression . 189
12.4 The Switch Expression . 189
12.5 More on Visibility . 190

Chapter 1

Getting Started

This chapter explains how to download and install Stanza for your system, compile the example programs,
and also write your own very first Stanza program.

1.1 Get Stanza

Download Stanza

Navigate to www.lbstanza.org, go to the Downloads section of the webpage, and download the zip file
containing the Stanza compiler for your platform. Unzip the file contents to a folder called mystanza. This
is the directory where Stanza will be installed.

The main Stanza compiler should be located at

mystanza/stanza

and the core and collections libraries should be located at

mystanza/core/core.stanza

mystanza/core/collections.stanza

Installing on Linux and OS-X

If you’re on a linux platform, open the terminal and type

cd mystanza

./ stanza install -platform linux

If you’re on Mac OS-X, then type instead

cd mystanza

./ stanza install -platform os-x

This creates a .stanza file in your home directory that contains the installation directory for Stanza.

Put Stanza in your Path

Type the following if you want to be able to call Stanza from any working directory.

sudo ln stanza /usr/local/bin/stanza

5

CHAPTER 1. GETTING STARTED 6

Installing on Windows

Open cmd.exe and type

cd mystanza

stanza install -platform windows -path .

This creates a .stanza file in the mystanza directory. Stanza will print out a message telling you to set the
STANZA CONFIG environment variable to the installation directory. Additionally, add the mystanza

directory to the PATH environment variable to be able to run stanza from any directory.

Running Stanza on windows additionally requires the MinGW-w64 port of the gcc compiler. Download the
mingw-w64-install.exe installer from https://sourceforge.net/projects/mingw-w64/ and run it. By
default, it is installed in C:\Program Files\mingw-w64. Add the MinGW-w64 bin directory to the PATH

environment variable.

At the time of writing, the bin directory corresponding to our MinGW-w64 installation was located at

C:\ Program Files\mingw -w64\x86_64 -5.3.0 -posix -seh -rt_v4 -rev0\mingw64\bin

Test

Type the following in the terminal

stanza version

It should print out the version of the Stanza compiler that you downloaded. If you don’t see this, then
double check that

1. you downloaded Stanza for the right platform.

2. you installed Stanza with the correct -platform flag.

3. you put Stanza on your path.

Compile an Example

Type the following in the terminal

cd mystanza

stanza examples/helloworld.stanza -o helloworld

This should compile the helloworld example that comes with Stanza and generate an executable called
helloworld. If this does not work, then double check that

1. you are in the mystanza folder.

2. you installed Stanza with the correct -platform flag.

3. you have the Gnu C compiler installed and can call it by typing cc (or gcc for Windows) in the
terminal.

Run the Example

Type the following to run the compiled executable. It should print out ”hello world”.

./ helloworld

If you’re running Windows, then type either

https://sourceforge.net/projects/mingw-w64/

CHAPTER 1. GETTING STARTED 7

helloworld

or

helloworld.exe

Congratulations! You’ve successfully installed Stanza! Now try compiling and running the other examples
in the examples directory.

1.2 Write a Program

Basic Skeleton

Create a folder called stanzaprojects and create a file called hello.stanza containing

defpackage mypackage :

import core

defn main () :

println (" Timon")

println ("and")

println (" Pumbaa ")

main()

Make sure you don’t forget the space between the main and the ()! We will explain later why this is
important. Compile and run it by typing

stanza hello.stanza -o hello

./hello

It should print out

Timon

and

Pumbaa

More println Statements

Surround the call to main with the following print statements

println (" Simba")

main()

println ("and Nala")

Run the program again and it should print out

Simba

Timon

and

Pumbaa

and Nala

The program runs in the order that it sees the top-level statements.

CHAPTER 1. GETTING STARTED 8

Delete the Call to main

Delete the call to main entirely.

println (" Simba")

println ("and Nala")

Now the program prints out

Simba

and Nala

If you don’t call main then it never runs.

Rename main

Rename the main function to hakuna.

defpackage mypackage :

import core

defn hakuna () :

println (" Timon")

println ("and")

println (" Pumbaa ")

hakuna ()

The program still prints out

Timon

and

Pumbaa

There is nothing special about the main function. Name it whatever you like.

Chapter 2

The Very Basics

This chapter introduces the basic programming constructs in Stanza. After this chapter, you’ll be able to
write basic programs that do simple things.

2.1 Project Framework

Follow these steps to set up a project framework.

Create basics.stanza

In your stanzaprojects directory, create a file called basics.stanza containing

defpackage mypackage :

import core

defn main () :

println ("Code goes here")

main()

Again, make sure you do not forget the space between the main and the (). We’ll explain why this is
necessary when we discuss Stanza’s lexical structure.

Compile and Run

Compile and run the basic framework by typing the following in the terminal

stanza basics.stanza -o basics

./ basics

The basic framework should print out

Code goes here

Follow the chapter and try out the examples by replacing the println command with the example code.

9

CHAPTER 2. THE VERY BASICS 10

Indentation

Try changing the basic framework to

defpackage mypackage :

import core

defn main () :

println ("Code goes here")

main()

and try to compile it. It won’t work. My Stanza installation says

Syntax Error: Import clause expected here.

Indentation is important in Stanza programs. Be careful when trying out the examples.

And don’t use tabs. Stanza won’t let you. We don’t like tabs.

2.2 Printing Simple Messages

Printing is important. It’s the only way to observe what your program is doing.

Strings

This is a string.

"Timon and Pumbaa"

It’s a bunch of characters surrounded in double quotes.

Printing Strings

Use the println function to print strings.

println (" Timon")

println ("and")

println (" Pumbaa ")

prints out

Timon

and

Pumbaa

Print Without a New Line

Use the print function to print strings without starting a new line at the end.

print("Timon ")

print(" and")

print(" Pumbaa ")

prints out

Timon and Pumbaa

CHAPTER 2. THE VERY BASICS 11

Ints

This is an integer.

42

It’s a bunch of digits, and represents the integers that you were taught in school.

Printing Integers

The print and println function works on integers too.

print (1)

print(" and a ")

print (2)

print(" and a ")

println (1)

println (2)

println (3)

println (4)

prints out

1 and a 2 and a 1

2

3

4

Actually print and println works on a lot of things. We’ll learn about that later.

Printing Multiple Things

Calling println repeatedly to print multiple things is tedious. Use println-all to print out multiple
things.

println -all([1 " and a " 2 " and a "])

println -all([1 2 3 4 "."])

prints out

1 and a 2 and a

1234.

If you don’t want to start a new line at the end, use print-all instead.

print -all ([1 " and a " 2 " and a "])

println -all([1 2 3 4 "."])

prints out

1 and a 2 and a 1234.

Don’t fret about the [] brackets for now. They create tuples. We’ll learn about those later.

Formatted Printing

Sometimes it’s tedious to print multiple things even with println-all. Here’s how to print things
according to a format string.

println ("%_ and a %_ and a %_, %_, %_, %_!" % [1 2 1 2 3 4])

CHAPTER 2. THE VERY BASICS 12

prints out

1 and a 2 and a 1, 2, 3, 4!

Notice that you’re calling the same println function that you’ve already learned. The % operator is what’s
doing all the work. We’ll learn other operators later.

Where’s the Commas?

Some of you may have noticed the lack of commas in the examples. Try adding them back in.

println ("%_ and a %_ and a %_, %_, %_, %_!" % [1, 2, 1, 2, 3, 4])

still prints out

1 and a 2 and a 1, 2, 3, 4!

Commas are treated identically to spaces in Stanza. (Unless they are part of a string.) Try going crazy!

println ("%_ and a %_ and a %_, %_, %_, %_!" % [1 2,1,2,,,,3,,,,,4])

The above still prints out what it used to. But don’t do that. That was just an example.

2.3 Lexical Structure

Before compilation, a Stanza program is lexed into individual identifiers, numbers, and lists. Here are the
rules that you’ll need to know.

Lexemes

The first thing that Stanza does is break down a program into a sequence of lexemes, where each lexeme is
separated by either whitespace or one of the following characters.

, . : & | < > [] { } ()

Numbers

A number is a lexeme that begins with a digit, or a hyphen followed by a digit. Here are some examples.

3

50

-13

100L

Operators

An operator is any lexeme that is made up of the following characters.

~ ! @ # $ % ^ * + - = / . : & | < >

Here are some example operators.

CHAPTER 2. THE VERY BASICS 13

+

*

&

&&

+=

>>>

<+>

::=

<^.^>

Identifiers

An identifier is any lexeme that is not a number or operator. Here are some examples.

x

timon

timon_and_pumbaa

timon -and -pumbaa

#timon

$timon

timon?

x+one

x1

x+1-3

Opening Brackets

Syntactically, an identifier followed immediately by a opening bracket character is treated differently than if
the two were separated by spaces. For example

f(x)

is syntactically different than

f (x)

The former calls the function f with x. The latter is simply the function f followed by the value x.

This is similar to how

ab

is syntactically different than

a b

The two mean different things. Please keep this in mind when following the examples in this book. For
example, this is why it was stressed to you to remember the space after main in

defn main () :

...

Additionally,

f[x]

is syntactically different than

f [x]

and

CHAPTER 2. THE VERY BASICS 14

f{x}

is syntactically different than

f {x}

and

f<x>

is syntactically different than

f <x>

2.4 Comments

Comments begin with the ; character, and every following character in the line will be regarded as a
comment and won’t affect the behaviour of the code. Here’s an example of using comments.

;My favorite characters

println (" Timon") ;The small one

println ("and")

println (" Pumbaa ") ;and the smart one

Code without comments is very difficult to understand. Use comments often.

2.5 Operators

Basic Arithmetic

To add two numbers together, use the + operator.

println (10 + 32)

prints out

42

That means the result of adding 32 to 10 is 42. We say that the expression 10 + 32 returns 42. We’ll
learn later why we use the word returns.

Here are examples of using the other arithmetic operators.

68 + 32 ;Addition

68 - 32 ;Subtraction

68 * 32 ;Multiplication

68 / 32 ;Division

68 % 32 ;Modulus

Bitwise Arithmetic

Here are examples of using the bitwise operators.

24 << 2 ;Left Bit Shift

24 >> 2 ;Right Bit Shift

24 >>> 2 ;Arithmetic Right Bit Shift

24 & 2 ;Bitwise And

24 | 2 ;Bitwise Or

24 ^ 2 ;Bitwise Xor

CHAPTER 2. THE VERY BASICS 15

Operator Precedence

All the operators are left associative. This means that in the following expression

1 + 2 - 3 + 4 - 5 + 6

the operators are applied left to right. The above is equivalent to

((((1 + 2) - 3) + 4) - 5) + 6

In expressions containing a mix of operators, the operators with highest precedence are grouped together
first, followed by the operators with second highest precedence, until you reach the operators with lowest
precedence. The shift operators (<<, >>, >>>) have precedence 3. The multiply, divide, modulo, bitwise
and, and bitwise xor operators (*, /, %, &, ^) have precedence 2. Addition, subtraction, and bitwise or, (+,
-, |), have precedence 1.

The following expression

3 + 2 << 2 * 3 + 3 << 1

first groups the precedence 3 operators

3 + (2 << 2) * 3 + (3 << 1)

followed by the precedence 2 operators

3 + ((2 << 2) * 3) + (3 << 1)

followed by the precedence 1 operators

(3 + ((2 << 2) * 3)) + (3 << 1)

Unary Operators

Here’s how to negate a number.

(- 3)

The parentheses are not optional!

Here’s how to flip all the bits in a number.

(~ 3)

Again, the parentheses are not optional! This is different than most other languages. There’s a good reason
for this. But don’t forget them!

2.6 Values

Syntax

The statement

val a:Int = 3 * 71

calculates the result of 3 * 71 and stores the result in the value a.

After the storing the result in a, you can then use that value afterwards by name.

println(a)

You cannot change what is stored in a value once it is initialized.

CHAPTER 2. THE VERY BASICS 16

Breaking up Complicated Expressions

You can use values to break up complicated expressions into smaller ones.

println (1 + 30 * 2 * 3 - 30 / (3 << 1))

can be rewritten as

val a:Int = 30 * 2 * 3

val b:Int = 30 / (3 << 1)

println (1 + a - b)

Types

The Int in the previous example is called a type annotation. It says that only an integer can be stored in a.

Stanza won’t let you store anything else into a. We can try to store a string

val a:Int = "Timon"

but attempting to compile it gives us this error.

Cannot assign expression of type String to value a with declared type Int.

If you want to store a string into a, then you have to declare it like this.

val a:String = "Timon"

Later, we will learn more about types and about types other than Int and String.

Type Inference

If you leave off the type annotation

val a = 3 * 71

then Stanza figures out the type based on the expression it’s initialized with.

Most Stanza programmers leave off type declarations for values.

2.7 Variables

A variable is declared like a value, but using var instead of val.

var a:Int = 10 + 30

Just like a value, the result of calculating 10 + 30 is stored in the variable a.

And just like a value, you can refer to it by name afterwards.

println(a)

The difference is that, even after it is initialized, you can still store something else into a variable.

var a:Int = 3 * 71

println(a)

a = -10

println(a)

prints out

CHAPTER 2. THE VERY BASICS 17

213

-10

After we print out a for the first time, we use the = operator to store -10 into a. The second time we print
out a, it prints out -10.

Types

Just like values, a variable’s type annotation restricts what you can store inside it. Here’s what happens
when we attempt to store a string into a.

var a:Int = 3 * 71

a = "Timon"

Compiling the above gives us

Cannot assign expression of type String to variable a with declared type Int.

Type Inference

Just like values, you can leave off the type annotation for a variable.

var a = 3 * 71

println(a)

a = -10

println(a)

However, the inferred type for a variable depends upon all the values assigned to it, not just the initial one.

For various reasons, Stanza cannot always infer the type of a variable, as in this example. (Don’t mind the
functions you don’t know. We’ll learn them later.)

var a = 3 * 71

a = cons(a, List ())

Attempting to compile the above gives us this error.

Could not infer type of variable a.

In these cases, you’ll have to provide an explicit type annotation for the variable.

Uninitialized Variables

Variables don’t have to be declared with an initial value. Here’s a variable, declared to only hold integers,
but with no initial value.

var x:Int

Attempting to read from an uninitialized variable will crash the program. The following program

var x:Int

println(x)

when compiled and ran crashes with this error.

FATAL ERROR: Variable is uninitialized.

CHAPTER 2. THE VERY BASICS 18

2.8 Functions

Here’s a function that subtracts forty two from its argument.

defn subtract -forty -two (x:Int) -> Int :

x - 42

And here’s how you call the function.

subtract -forty -two (43)

Here’s the complete program.

defpackage mypackage :

import core

defn subtract -forty -two (x:Int) -> Int :

x - 42

println(subtract -forty -two (43))

It prints out:

1

This means that the result of calling subtract-forty-two with 43 is 1. We say that
subtract-forty-two(43) returned 1.

Return Value

Here’s a silly change we can make to subtract-forty-two.

defn subtract -forty -two (x:Int) -> Int :

x + 43

x - 42

subtract-forty-two(43) still returns 1 though. The result of the last expression in a function’s body is
the value returned by the function.

Side Effects

Here’s another change we can make to subtract-forty-two.

defn subtract -forty -two (x:Int) -> Int :

println (" Subtracting 42 from %_." % [x])

x - 42

Now the following code

println(subtract -forty -two (43))

prints

Subtracting 42 from 43.

1

The expressions in a function body are evaluated one at a time, but only the result of the last one is
returned.

CHAPTER 2. THE VERY BASICS 19

Return Type

The Int following the -> in subtract-forty-two is the function’s return type. It says that the function
must return an integer.

Stanza won’t let you return anything else. If we try to return a string

defn subtract -forty -two (x:Int) -> Int :

println (" Subtracting 42 from %_." % [x])

"Timon"

then the Stanza compiler gives us this error.

Cannot return an expression of type String for function

subtract -forty -two with declared return type Int.

You can leave off the return type annotation

defn subtract -forty -two (x:Int) :

println (" Subtracting 42 from %_." % [x])

x - 42

in which case, Stanza will figure out the return type automatically based on the last expression in the
function body. In certain cases, Stanza will not be able to figure it out and you’ll have to provide it
explicitly.

Argument Types

The :Int following the x argument in subtract-forty-two is the type annotation for the argument. This
type annotation does two things. The first is that it restricts what values you can call
subtract-forty-two with. Compiling the following code

subtract -forty -two("Hello")

gives the error

Cannot call function subtract -forty -two of type Int -> Int

with arguments of type (String).

The second is that it restricts what you are allowed to do with x. Here is what happens if we try to use x

as if it were a format string.

defn subtract -forty -two (x:Int) :

println(x % [1, 2, 3])

x - 42

Compiling it gives us this error.

No appropriate function modulo for arguments of type

(Int , [Int , Int , Int]). Possibilities are:

modulo: (String , Seqable) -> Printable at core/core.stanza :1982.12

modulo: (Byte , Byte) -> Byte at core/core.stanza :2444.21

modulo: (Int , Int) -> Int at core/core.stanza :2575.12

modulo: (Long , Long) -> Long at core/core.stanza :2644.21

Roughly, that error message tells us that there are four different functions called modulo, and none of them
can called with x and [1, 2, 3]. We’ll learn later how to interpret that error message more precisely.

CHAPTER 2. THE VERY BASICS 20

Example: String Arguments

Here is an example of a function that accepts a string as an argument.

defn timon -and -pumbaa -says (format:String) :

println(format % ["Timon", "Pumbaa "])

timon -and -pumbaa -says(

"%_ says they ’re fireflies , while %_ says they ’re big balls of gas.")

timon -and -pumbaa -says(

"When the world turns their back on %_, %_ turns their back on the world .")

Compiling and running the above prints

Timon says they ’re fireflies , while Pumbaa says they ’re big balls of gas.

When the world turns their back on Timon , Pumbaa turns their back on the world.

We did not provide an explicit return type for timon-and-pumbaa-says. Thus Stanza figures it out
automatically from the result of the last expression, the println. It turns out that println returns the
value false which has type False. We could explicitly provide the return type as well.

defn timon -and -pumbaa -says (format:String) -> False :

println(format % ["Timon", "Pumbaa "])

Leaving off the Argument Type

Beware. Argument types are not inferred automatically. You can leave off the argument types

defn subtract -forty -two (x) :

x - 42

but this is not equivalent to declaring x as an Int.

If you leave off the type annotation for an argument, it means that the argument can be anything. You can
call the function with whatever you want, and within the body of the function Stanza will let you do
whatever you wish with the argument. If you do something wrong then the program will crash when ran.

Here is an incorrect program that compiles correctly.

defn subtract -forty -two (x) :

println(x % ["Timon", "Pumbaa "])

x - 42

subtract -forty -two ("%_ and %_ say Hakuna Matata !")

But when the program is ran, it crashes with this error.

Timon and Pumbaa say Hakuna Matata!

FATAL ERROR: Cannot cast value to type.

at core/core.stanza :2566.12

at stanzaprojects/basics.stanza :6.3

at stanzaprojects/basics.stanza :8.0

The error message is saying that in the expression x - 42 it could not convert x into the appropriate type
needed by the - operator (Int).

The Unknown Type

More precisely, leaving off the type annotation for an argument is equivalent to declaring the argument
with the ? type. So the above program can be written equivalently as

CHAPTER 2. THE VERY BASICS 21

defn subtract -forty -two (x:?) :

println(x % ["Timon", "Pumbaa "])

x - 42

subtract -forty -two ("%_ and %_ say Hakuna Matata !")

The ? type is very special and forms the foundation of Stanza’s optional type system. You can pass any
value to a location where a ? is expected. And, you can use a value of ? type anywhere.

You can use the ? type in variable and value declarations too. Here is an example of using them with
variables.

var x:? = "%_ says Hakuna ."

println(x % ["Timon "])

x = 10 + 32

println (" There are about %_ fireflies in the universe ." % [x])

It prints out

Timon says Hakuna.

There are about 42 fireflies in the universe.

Notice that we’re using x as a format string in one case, and a number in the other case. The ? type allows
us to do this.

2.9 Comparisons

Comparison Operators

To test whether one integer is smaller than another number, you can use the < operator. Here’s an example.

println (10 < 32)

It prints out

true

This means that 10 is less than 32. The expression 10 < 32 returned the value true. Conversely,

println (10 > 32)

prints out

false

This means that 10 is not greater than 32. The expression 10 > 32 returned the value false.

Here’s all the other comparison operators you can use.

10 < 32 ;Less Than

10 <= 32 ;Less Than or Equal to

10 > 32 ;Greater Than

10 >= 32 ;Greater Than or Equal to

10 == 32 ;Equal

10 != 32 ;Not Equal

CHAPTER 2. THE VERY BASICS 22

Logical Operators

You can use the not, and, and or operators to combine the results of multiple comparisons. Here is how to
test whether 1 is less than 3 and greater than 5.

println (1 < 3 and 1 > 5)

Here is how to test whether 1 is less than 3 or greater than 5.

println (1 < 3 or 1 > 5)

Here is how to test whether 1 is not less than 3.

println(not 1 < 3)

2.10 If Expressions

If expressions let you test whether a value is true or false and do different things depending on the result.

val x = 10 < 32

if x :

println (" Timon is better !")

else :

println (" Pumbaa is better !")

prints out

Timon is better!

The result of 10 < 32 (true) is stored in x. Then because x (the predicate) is true, the consequent branch
of the if expression is evaluated instead of the alternate branch.

Change the < operator to a > operator to root for Pumbaa instead.

Result of an If Expression

If expressions evaluate to a result. The result of an if expression is the result of the last expression in the
consequent branch if the predicate is true. Otherwise it is the result of the last expression in the alternate
branch.

Here’s an example of using the result of an if expression.

val x =

if 10 < 32 :

"Timon"

else :

"Pumbaa"

println ("%_ is better !" % [x])

It prints out the same message as the last example.

Default Else Branch

If you leave off the else branch in an if expression, then the if expression simply evaluates to false if the
predicate is not true. In the following code

if 10 > 32 :

println (" Timon is better !")

nothing is ever printed.

CHAPTER 2. THE VERY BASICS 23

Nested If Expressions

You can nest if expressions inside other if expressions. The following code prints different messages when x
falls in different ranges.

val x = 32

if x < 0 :

println ("x is negative !")

else :

if x < 10 :

println ("x is between 0 and 10")

else :

if x < 30 :

println ("x is between 20 and 30")

else :

println ("x is really big !")

It uses nested if expressions to test a series of conditions.

Because nested if expressions are so common, you are allowed to omit the colon after the else keyword if it
is followed by an if expression. The above can be rewritten equivalently as

val x = 32

if x < 0 :

println ("x is negative !")

else if x < 10 :

println ("x is between 0 and 10")

else if x < 30 :

println ("x is between 20 and 30")

else :

println ("x is really big !")

Here’s another example. sign is a function that computes the sign of its argument.

defn sign (x:Int) :

if x < 0 :

-1

else if x == 0 :

0

else :

1

True and False

The true and false values can be created directly simply by referring to them by name.

The following

val worries? = true

if worries? :

println (" Chill out!")

else :

println (" Hakuna Matata !")

prints out

Chill out!

To print Hakuna Matata! instead, change the true to false.

The value true has type True, and the value false has type False.

CHAPTER 2. THE VERY BASICS 24

2.11 Expression Sequences

Multiple expressions can be grouped together as an expression sequence by surrounding them with
parentheses.

val x = (println ("A"), 42)

println(x)

prints out

A

42

The expressions in an expression sequence are evaluated one at a a time, and the result of the last
expression is the result of the expression sequence.

In the above example, the first expression in the sequence, println("A"), is evaluated, and then the last
expression, 42, is the result of the sequence and is stored in x. x is then printed to the screen.

2.12 Structure Through Indentation

Some of you may be concerned about Stanza’s use of structure through indentation due to how this system
has been implemented in the past. Don’t worry. Stanza’s indentation structuring mechanism is very simple
and predictable.

The indentation structuring mechanism is governed by a single rule: a line ending colon automatically
inserts parentheses around the following indented block.

Thus, after the implicit parentheses have been added, the previous sign example looks like this.

defn sign (x:Int) : (

if x < 0 : (

-1)

else if x == 0 : (

0)

else : (

1))

A program with no line ending colons can even be written on a single line if desired.

defn sign (x:Int) : (if x < 0 : (-1) else if x == 0 : (0) else : (1))

Here is one more example.

defn hakuna () :

println (" Timon")

println (" Pumbaa ")

becomes the following after implicit parentheses are added.

defn hakuna () : (

println (" Timon")

println (" Pumbaa "))

Here is hakuna written out on a single line.

defn hakuna () : (println (" Timon") println (" Pumbaa "))

As you may have noticed, the indentation mechanism is simply used as a shorthand for creating expression
sequences out of indented blocks.

CHAPTER 2. THE VERY BASICS 25

2.13 While Loops

The following

var x = 1

while x < 1000 :

println ("x is %_" % [x])

x = x * 2

prints out

x is 1

x is 2

x is 4

x is 8

x is 16

x is 32

x is 64

x is 128

x is 256

x is 512

Here is the general form.

while predicate : body

A while loop repeatedly evaluates a block of code so long as the predicate expression evaluates to true.

Here is the order in which the while loop does things.

1. Evaluate the predicate.

2. If the predicate evaluates to false, then the loop is done.

3. Otherwise, evaluate the body and then repeat from step 1.

2.14 For ”Loops”

Stanza’s for construct is extremely powerful. ”Loops” is in double quotes because, strictly speaking, the for
construct is not a looping mechanism. But it is often used as one, so we’ll explain it here as if it were.
Later, we’ll learn the general form of the for construct.

Counting Loops

The following

for i in 0 to 4 do :

println (" Pumbaa is Better !")

prints out Pumbaa is Better! four times.

The following

for i in 0 to 4 do :

println ("i is %_" % [i])

prints out

i is 0

i is 1

i is 2

i is 3

CHAPTER 2. THE VERY BASICS 26

A counting loop has this general form.

for x in start to end do : body

For each integer between start (inclusive) and end (exclusive), the body is evaluated once with x bound to
that integer.

Range Expressions

In the previous example, the expression 0 to 4 creates a Range object. A Range object represents a
sequence of integers between some starting index and optional ending index.

Here’s how to create a Range object that counts up in steps of 2.

0 to 10 by 2

It represents the numbers 0, 2, 4, 6, 8.

The following

for i in 0 to 10 by 2 do :

println ("i is %_" % [i])

prints out

i is 0

i is 2

i is 4

i is 6

i is 8

To make the ending index inclusive rather than exclusive, use the through keyword rather than the to

keyword.

0 through 10 by 2

represents the numbers 0, 2, 4, 6, 8, 10.

If you use false for the ending index, then the range represents an infinite sequence of numbers.

0 to false by 3

represents the numbers 0, 3, 6, 9,

2.15 Labeled Scopes

For Returning Early

As you’ve learned so far, functions return the result of the last expression in its body. But what if you
want to return earlier?

As an example, here’s a function that computes the n’th fibonacci number.

defn fibonacci (n:Int) -> Int :

var a:Int = 0

var b:Int = 1

var i = 0

while i < n :

val c = a + b

a = b

b = c

i = i + 1

b

CHAPTER 2. THE VERY BASICS 27

Let’s use a labeled scope to change fibonacci to return -1 immediately if the argument n is negative.

defn fibonacci (n:Int) -> Int :

label <Int > myreturn :

if n < 0 : myreturn (-1)

var a:Int = 0

var b:Int = 1

var i = 0

while i < n :

val c = a + b

a = b

b = c

i = i + 1

b

The first line within the labeled scope

if n < 0 : myreturn (-1)

checks to see whether n is negative, and if it is, it immediately returns the value -1 from the function by
calling the exit function myreturn.

For Breaking From Loops

Labeled scopes are also useful for breaking early out of loops.

Here’s how the while loop in fibonacci could have been written.

defn fibonacci (n:Int) -> Int :

var a:Int = 0

var b:Int = 1

var i = 0

label <False > break :

while true :

if i == n : break(false)

val c = a + b

a = b

b = c

i = i + 1

b

The code above starts an infinite loop, but breaks out of it when i is equal to n.

General Form

The general form of a labeled scope is

label <Type > exit :

body

Type is the type of the value returned by the labeled scope and exit is the name of the exit function.

You can name the exit function whatever you like. When used to return early from a function, return is a
popular name for the exit function. When used to break early from a loop, break is a popular name.

The label construct simply executes the given body. If the exit function is never called then the result of
the body expression is the result of the label construct. If the exit function is called, then we immediately
stop evaluation of the body, and the argument to the exit function is the result of the label construct.

CHAPTER 2. THE VERY BASICS 28

Well-Typed Labeled Scopes

The type annotation on the label construct enforces two properties.

1. The argument to the exit function must be of the specified type.

2. The result of the body itself must be of the specified type, as that is the value that is returned by the
label construct if the exit function is never called.

The first restriction is fairly obvious. If you pass an argument of the wrong type to the exit function

defn fibonacci (n:Int) -> Int :

label <Int > myreturn :

if n < 0 : myreturn (" Timon")

var a:Int = 0

var b:Int = 1

var i = 0

while i < n :

val c = a + b

a = b

b = c

i = i + 1

b

then Stanza will issue an error.

Cannot call function myreturn of type Int -> Void with arguments of type (String).

The second restriction sometimes arises in more subtle situations. The following function computes the
first integer whose square is greater than 1000.

defn first -big -square () :

label <Int > return :

for i in 0 to false do :

if i * i > 1000 :

return(i)

But compiling it gives us this error.

Cannot return an expression of type False for anonymous function

with declared return type Int.

This message says that the body of the labeled scope returns False but it’s declared to return Int. This
arises because the for construct with the do operating function returns false, but the type annotation on
the label construct was Int.

Since we know that the return exit function is guaranteed to be called, we can explicitly handle this case
by causing the program to fail if the loop ever finished without calling return.

defn first -big -square () :

label <Int > return :

for i in 0 to false do :

if i * i > 1000 :

return(i)

fatal(" Unreachable Statement ")

2.16 Scopes and the Let Expression

We have now seen a number of expressions that introduce a new scope: functions, while loops, for loops, if
expressions, and labeled scopes. Values and variables defined within a scope are only visible within that
scope. For example, in the following code

CHAPTER 2. THE VERY BASICS 29

val x = 3

if x < 5 :

val y = 10

println(y)

else :

val z = 12

println(z)

y is in the scope of the consequent branch of the if expression, and it is only visible from within the
consequent branch of the if expression. And z is only visible from within the alternate branch of the if
expression. Referencing y and z from outside the scope in which they were declared

val x = 3

if x < 5 :

val y = 10

println(y)

else :

val z = 12

println(z)

println(y)

println(z)

is illegal and would not pass the Stanza compiler.

Scopes may themselves contain other nested scopes. In the above example, x’s scope, contains both the
scope of the consequent branch, and the scope of the alternate branch of the if statement. At any point in
the program, you may only refer to a value or variable defined in a containing scope. The following is legal.

val x = 3

if x < 5 :

val y = 10

println(y)

println(x)

else :

val z = 12

println(z)

println(x)

If there are multiple values with the same name that are visible, you automatically refer to the one in the
nearest scope. Thus the following code prints 11, not 3.

val x = 3

if x < 10 :

val x = 11

println(x)

This feature is called shadowing.

Sometimes it is useful to artificially introduce a new scope, simply because you will define a number of
values that you only want visible within the scope. You can do this using the let expression.

val x = 3

let :

val y = 4

println(y)

In the above code, the let expression introduces a new scope where y is defined. After the let expression, y
will no longer be visible.

2.17 Arrays

Arrays are one of Stanza’s most fundamental datastructures. The following

CHAPTER 2. THE VERY BASICS 30

val a = Array <Int >(10)

creates an array of length 10 and gives it the name a. You can imagine an array to look like a row of boxes,
into which you can put and retrieve objects. So a is a row of ten boxes, each capable of holding an integer.

Putting Things In

You can put things into the boxes like this.

a[0] = 42

a[1] = 13

The first box is numbered box 0. The next box is numbered box 1. The last box in a is box 9 because a

has only ten boxes in total.

Getting Things Out

You can retrieve the contents of boxes like this.

println(a[0])

println(a[1])

prints out

42

13

Asking For Its Length

You can call the length function to ask for the length of an array.

val l = length(a)

println ("a has %_ boxes ." % [l])

prints out

a has 10 boxes.

The type of a is Array<Int> indicating that it is an array for holding integers. An array for holding strings
would have type Array<String>. And an array that can hold anything would have type Array<?>.

Arrays and Loops

Arrays are most powerful when combined with loops. This function

defn array -sum (xs:Array <Int >) :

var sum = 0

for i in 0 to length(xs) do :

sum = sum + xs[i]

sum

computes the sum of every integer in an array. Let’s use it to compute the sum of 10, 11, 7, and 8.

val a = Array <Int >(4)

a[0] = 10

a[1] = 11

a[2] = 7

a[3] = 8

println(array -sum(a))

CHAPTER 2. THE VERY BASICS 31

prints out

36

2.18 Tuples

Tuples represent an immutable collection of items. The following creates a two-element type.

val t:[Int , String] = [42, "Hello "]

It contains an Int and a String. To extract the elements of a tuple, type

val [x, y] = t

The above code checks that t is a two-element tuple, and then puts the first element of t in x and the
second element of t in y.

Notice that the type of the expression [42, "Hello"] is [Int, String]. That type says its a two-element
tuple containing an Int and a String.

Returning Multiple Values

Tuples are often used to return multiple values from a function. The following function takes an argument,
n, and a distance, d, and returns both n - d and n + d.

defn bracket (n:Int , d:Int) :

[n - d, n + d]

We can call and receive both return values from bracket like this.

val [lo, hi] = bracket(5, 3)

println (" Bracket around %_ and %_" % [lo , hi])

2.19 Basic Types

At this point, we have seen a couple of different types now. Here is a listing of the other basic types in
Stanza.

Byte : e.g. 1Y, 42Y, 255Y

Int : e.g. 10, 42

Long : e.g. 10L, 420020020L

Float : e.g. 1.0f, 42.0f

Double : e.g. 1.0, 42.0

String : e.g. "Timon", "Pumbaa"

Char : e.g. ’a’, ’Z’

True : e.g. true

False : e.g. false

As we’ve said already, the ? type is special and any value can be passed to a place expecting a ?.

All of the types listed in the previous table are examples of ground types. It means that you refer to them
simply by their name and they don’t take any parameters. With the introduction of arrays, you have now
also been introduced to your first parametric type.

Array <Int > : Arrays of Ints

Array <String > : Arrays of Strings

Array <Array <Int >> : Arrays of Arrays of Ints

Array <?> : Arrays of anything

CHAPTER 2. THE VERY BASICS 32

Unlike ground types, parametric types take additional type parameters. An array needs to know what type
of objects it holds, so it has one type parameter for specifying that.

Note that for parametric types, if you leave off its parameters, then it is equivalent to specifying ? for all of
its type parameters. Thus

Array

is equivalent to

Array <?>

And

Array <Array >

is equivalent to

Array <Array <?>>

Tuple types have their own syntax, and consists of surrounding the types of all of its elements with the []

brackets. Here is a tuple containing an integer and a string.

[Int , String]

Here is a tuple containing an integer, a string, and a tuple of a single integer.

[Int , String , [Int]]

2.20 Structs

For convenience, Stanza provides a simple way to create compound types out of existing types using
structs. Here is how to define a new Dog type with two fields, a name, and a breed.

defstruct Dog :

name: String

breed: String

Once Dog is defined, you can create new Dog objects by calling the Dog function.

val d1 = Dog(" Chance", "Pitbull ")

val d2 = Dog(" Shadow", "Golden Retriever ")

Getter Functions

To retrieve the values of the fields it was constructed from, you may call the name and breed getter
functions.

println ("%_ is a %_." % [name(d1), breed(d1)])

prints out

Chance is a Pitbull.

CHAPTER 2. THE VERY BASICS 33

Struct Type

Additionally, once a struct is defined, you may now also use it as the name of a type. Here is a function
that prints out the contents of an array of Dog objects.

defn kennel -contents (dogs:Array <Dog >) :

println (" There are %_ dogs in the kennel ." % [length(dogs)])

for i in 0 to length(dogs) do :

println ("%_ the %_" % [name(dogs[i]), breed(dogs[i])])

Let’s try calling kennel-contents.

val kennel = Array <Dog >(3)

kennel [0] = Dog(" Chance", "Pitbull ")

kennel [1] = Dog(" Shadow", "Golden Retriever ")

kennel [2] = Dog("Bud", "Basketball Player ")

kennel -contents(kennel)

prints out

There are 3 dogs in the kennel.

Chance the Pitbull

Shadow the Golden Retriever

Bud the Basketball Player

Structs are just a convenient form for quickly declaring a new type, constructor function, and getter
functions. Later we’ll learn the general method for creating new types.

2.21 Exercises

1. Write a function called nearest-pow-2 that takes a single positive integer n and returns the closest
number to n that can be represented as a power of 2.

2. Write a program that prints out different messages depending on a value called temperature. If
temperature is below 20, then print Too Cold!. If it is between 20 and 40 then print Getting
There!, and print Pumbaa Approves! if it is over 40.

3. Use a for loop and a variable to compute the sum of all the integers between 100 (inclusive) to 500
(also inclusive).

4. Use a labeled scope and for loops to compute the minimum number, n, for which the sum of the
integers between 0 and n (inclusive) is above 10000.

5. Use a while loop and variables to calculate the great common divisor of two variables, x and y. The
Euclidean algorithm is the simplest one to use. Look online for a description about how the
algorithm works.

6. Write a function to print out the following pattern of stars. Allow the width and height of the
rectangle to be indicated by the arguments width and height respectively.

* *

* *

* *

* *

* *

* *

7. Write a program to print out the following pattern of stars. Allow the height of the triangle to be
indicated by an argument named height.

CHAPTER 2. THE VERY BASICS 34

*

8. For the following code, predict what will be printed out and then test your prediction.

val x = 42

println(x)

let :

println(x)

val x = "Hi"

println(x)

let :

val x = 42

println(x)

let :

val x = "There"

println(x)

println(x)

let :

val x = x + 1

println(x)

println(x)

9. For the following code, write it out completely on a single line, grouping expressions with parentheses
where necessary. Run both versions and ensure that they behave identically.

val x = (42 10)

for i in 0 to 10 do :

println(x)

println ("B")

println ("C")

for i in 0 to 10 do : println ("D")

println ("E")

Chapter 3

The Less Basic

3.1 More about Structs

Mutable Fields

In the last chapter, you were taught how to define structs and create objects. But the structs you created
were immutable. You couldn’t change the objects at all after you created them.

Here was our original definition of Dog.

defstruct Dog :

name: String

breed: String

We can create a dog by calling the Dog function with a provided name and breed. But once created, you
cannot change a dog’s name or breed. Here’s how to define Dog with a setter function for changing its name.

defstruct Dog :

name: String with: (setter => set -name)

breed: String

Now we can use the set-name function to change a dog’s name.

val d = Dog(" Shadow", "Golden Retriever ")

println ("I used to be called %_." % [name(d)])

set -name(d, "Sir Shadow the Wise")

println ("But now I am called %_." % [name(d)])

prints out

I used to be called Shadow.

But now I am called Sir Shadow the Wise.

With the above definition of Dog, we can change a dog’s name but not its breed. If we want to be able to
change the breed as well then we need to similarly give it a setter function.

The convention is to call the setter function the same name as the field it’s setting but with a set- prefix.
Follow this convention unless you have a good reason not to.

Providing Custom Printing Behaviour

We are used to using the print and println functions for printing things. Almost all of Stanza’s core
types can be printed using print. But print doesn’t yet know how to print Dog objects. So the following

35

CHAPTER 3. THE LESS BASIC 36

val d = Dog(" Shadow", "Golden Retriever ")

println ("They call me %_." % [d])

prints out the fairly useless message

They call me [Unprintable Object].

Here is how to provide custom printing behaviour for Dog objects.

defmethod print (o:OutputStream , d:Dog) :

print(o, "%_ the %_." % [name(d), breed(d)])

Now the same code

val d = Dog(" Shadow", "Golden Retriever ")

println ("They call me %_." % [d])

prints out

They call me Shadow the Golden Retriever.

The defmethod keyword extends a defined multi with a new method. We’ll learn what that all means later.
This gives you small taste of Stanza’s multimethod functionality and is the basis for Stanza’s class-less
object system.

In the body of the print method

print(o, "%_ the %_." % [name(d), breed(d)])

be especially mindful of the o argument to print. This argument says to print the message to the o output
stream.

3.2 The Match Expression

Now that you are familiar with a number of different types and know how to create objects of each one,
you’ll have to learn how to differentiate between them. Here’s how to write a function that does different
things depending on whether its argument is an integer or a string.

defn what -am-i (x) :

match(x) :

(i:Int) : println ("I am %_. I am an integer ." % [i])

(s:String) : println ("I am %_. I am a string ." % [s])

If we call it with an integer

what -am -i(42)

then it prints out

I am 42. I am an integer.

But if we call it with a string

what -am -i("Timon")

then it prints out

I am Timon. I am a string.

If we call it with neither an integer or a string

what -am -i(false)

CHAPTER 3. THE LESS BASIC 37

then the program crashes.

FATAL ERROR: No matching branch.

at stanzaproject/lessbasic.stanza :5.9

at stanzaproject/lessbasic.stanza :9.0

General Form

Here’s the general form of a match expression.

match(argument expressions ...) :

(argname:ArgType ...) : body

...

A match expression

1. computes the result of evaluating all the argument expressions,

2. then tests to see whether the results match the argument types indicated in the first branch.

3. If the types match, then the branch argument names are bound to the results, and the branch body is
evaluated. The result of the branch is the result of the entire match expression.

4. If the types do not match, then the subsequent branch is tried. This continues either until a branch
finally matches, or no branch matches and the program crashes.

Name Shadowing

The match expression branches each start a new scope, and the branch arguments are only visible from
within that scope. To avoid confusing you we gave new names (i and s) to the branch arguments in our
example

defn what -am-i (x) :

match(x) :

(i:Int) : println ("I am %_. I am an integer ." % [i])

(s:String) : println ("I am %_. I am a string ." % [s])

but you can really use any name for the branch arguments. In fact, it is common to use the same name as
the value that you are matching on.

defn what -am-i (x) :

match(x) :

(x:Int) : println ("I am %_. I am an integer ." % [x])

(x:String) : println ("I am %_. I am a string ." % [x])

Matching Multiple Arguments

The match expression supports matching against multiple arguments. Here’s a function that returns
different things depending on the types of both of its arguments.

defn differentiate (x, y) :

match(x, y) :

(x:Int , y:Int) : 0

(x:Int , y:String) : 1

(x:String , y:Int) : 2

(x:String , y:String) : 3

If we call it with different combinations of integers and strings

CHAPTER 3. THE LESS BASIC 38

println(differentiate (42, 42))

println(differentiate (42, "Timon "))

println(differentiate (" Pumbaa", 42))

println(differentiate (" Timon", "Pumbaa "))

it returns different results for each. The above prints out

0

1

2

3

Example: Cats and Dogs

Here’s a definition of two structs, Cat and Dog.

defstruct Dog : (name:String)

defstruct Cat : (name:String)

Here’s the definition of a say-hi function that prints different messages depending on whether x is a Cat

or Dog.

defn say -hi (x) :

match(x) :

(x:Dog) : println ("Woof says %_ the dog." % [name(x)])

(x:Cat) : println ("Meow says %_ the cat." % [name(x)])

Let’s call it a few times.

say -hi(Dog(" Shadow "))

say -hi(Dog(" Chance "))

say -hi(Cat("Sassy "))

prints out

Woof says Shadow the dog.

Woof says Chance the dog.

Meow says Sassy the cat.

Introducing Union Types

One problem with the say-hi function is that it allows us to pass obviously incorrect arguments to it,
which crashes the program.

say -hi(42)

results in

FATAL ERROR: No matching branch.

at stanzaproject/lessbasic.stanza :5.9

at stanzaproject/lessbasic.stanza :9.0

This is because we didn’t give x a type annotation

defn say -hi (x)

which we’ve said is equivalent to declaring it with the ? type.

defn say -hi (x:?)

CHAPTER 3. THE LESS BASIC 39

The ? type, by definition, allows us to pass anything to it, so Stanza is doing what it should, even though
it’s not what we want.

We would like to give x a type annotation that prevents us from passing 42 to say-hi, but what should it
be? It’s neither Dog nor Cat because say-hi has to accept them both. The solution is to annotate say-hi

to take either a Dog or a Cat.

defn say -hi (x:Dog|Cat) :

match(x) :

(x:Dog) : println ("Woof says %_ the dog." % [name(x)])

(x:Cat) : println ("Meow says %_ the cat." % [name(x)])

You can verify that calling say-hi with dogs and cats continue to work, but more importantly, that calling
say-hi with 42 doesn’t work. Attempting to compile

say -hi(42)

gives the error

Cannot call function say -hi of type Cat|Dog -> False with arguments of type (Int).

Cat|Dog is an example of a union type. Union types allow us to specify the concept of ”either this type or
that type”.

Branches with Unspecified Types

If you leave off the type annotation for an argument in a match expression branch, then Stanza will
automatically infer it to have the same type as the match argument expression. The following

defn f (x:Int|String) :

match(x) :

(x:Int) : body

(x) : body2

is equivalent to

defn f (x:Int|String) :

match(x) :

(x:Int) : body

(x:Int|String) : body2

This is often used to provide a default branch to run when none of the preceeding branches match.

Revisiting the If Expression

Now that you’ve been introduced to the match expression, it’s time to unveil the inner workings of the if
expression. It turns out that the if expression is just a slightly decorated match expression.

if x < 4 :

println ("Do this")

else :

println ("Do that")

is completely equivalent to

match(x < 4) :

(p:True) : println ("Do this")

(p:False) : println ("Do that")

The if expression is an example of a simple macro. Macros are very powerful tools for simplifying the
syntax of commonly used patterns. Stanza includes many constructs that are simply decorated versions of
other constructs, each implemented as a macro. The defstruct statement is another example. Later, we’ll
learn how to write our own macros to provide custom syntax for common patterns.

CHAPTER 3. THE LESS BASIC 40

3.3 The Is Expression

Often you simply want to determine whether an object is of a certain type. Here is a long-winded method
for checking whether x is a Dog object or not.

val dog? = match(x) :

(x:Dog) : true

(x) : false

Because this operation is so common, Stanza provides a shorthand for it. The above can be rewritten
equivalently as

val dog? = x is Dog

Here is the general form.

exp is Type

It first evaluates exp and then returns true if the result is of type Type. Otherwise it returns false. The
is expression is another example of a convenience syntax implemented using a macro. As you’ve noticed by
now, Stanza’s core library makes heavy use of macros.

The negative form of the is expression is the is-not expression. The following determines whether x is not a
type of Dog.

val not -dog? = x is -not Dog

3.4 Casts

Stanza’s type system is designed primarily to be predictable, not necessarily smart. This means that, as the
programmer, you will often be able to infer a more specific type for an object than Stanza. Here is an
example.

defn meow (x:Cat) :

println ("Meow !!!")

defn f (x:Cat|Dog) :

val catness = if x is Cat : 1 else : -1

if catness > 0 :

meow(x)

Attempting to compile the above gives the error

Cannot call function meow of type Cat -> False with arguments of type (Dog|Cat).

Stanza believes that x is a Dog|Cat, but from our reasoning, the only way that meow can be called is if
catness is positive. And catness is only positive if x is a Cat. Therefore x must be a Cat in the call to
meow and the code should be fine.

To force Stanza to accept x as a Cat, we can explicitly cast x.

defn f (x:Cat|Dog) :

val catness = if x is Cat : 1 else : -1

if catness > 0 :

meow(x as Cat)

The cast tells Stanza to trust your assertion that x is indeed a Cat. If, for some reason, your reasoning is
faulty and x turns out not to be a Cat, then the incorrect cast will cause the program to crash at that point.

CHAPTER 3. THE LESS BASIC 41

3.5 Deep Casts

Stanza’s cast mechanism is much more flexible than many other languages, and, in particular, supports the
notion of a deep cast. Here is a function that takes an array of integers or strings, and replaces each string
in the array with its length.

defn compute -lengths (xs:Array <Int|String >) :

for i in 0 to length(xs) do :

match(xs[i]) :

(x:String) : xs[i] = length(x)

(x:Int) : false

And here is a function that computes the sum of an array of integers.

defn sum -integers (xs:Array <Int >) :

var sum = 0

for i in 0 to length(xs) do :

sum = sum + xs[i]

sum

Now, given an array containing both integers and strings, we want to first replace each string with its
length, and then compute the sum of the integers in the array.

val xs = Array <Int|String >(4)

xs[0] = 42

xs[1] = 7

xs[2] = "Timon"

xs[3] = "Pumbaa"

compute -lengths(xs)

sum -integers(xs)

Attempting to compile the above gives us the error

Cannot call function sum -integers of type Array <Int > -> Int with arguments

of type (Array <String|Int >).

Stanza is complaining that sum-integers requires an array of integers, so xs is an illegal argument as it
might contain strings.

But we know that xs will not contain any strings at that point because compute-lengths replaced all of
them with their lengths. So we can use a cast to force Stanza to trust this assertion.

sum -integers(xs as Array <Int >)

With the above correction, the program now compiles and runs correctly.

Types as Contracts

The above was an example of a deep cast, because it wasn’t a direct assertion about the type of xs, but
about the types of the objects it contains. You might be wondering, then, what exactly does that cast do?
Does it iterate through the array and check every element to see if it is an Int? You’ll be relieved to hear
that it does not. That would be hopelessly inefficient, and also impossible in general.

To answer the question, let’s investigate what the cast does in the case that we’re wrong. Change the
definition of compute-lengths to this.

defn compute -lengths (xs:Array <Int|String >) :

for i in 0 to length(xs) - 1 do :

match(xs[i]) :

(x:String) : xs[i] = length(x)

(x:Int) : false

CHAPTER 3. THE LESS BASIC 42

It now forgets to check the last element. So even after the call to compute-lengths, xs still contains one
last string ("Pumbaa") at the end, and thus our cast is incorrect.

Compile and run the program. It should crash with this error.

FATAL ERROR: Cannot cast value to type.

at core/core.stanza :3062.16

at stanzaprojects/lessbasic.stanza :13.18

at core/core.stanza :2292.9

at core/core.stanza :4042.16

at stanzaprojects/lessbasic.stanza :12.28

at stanzaprojects/lessbasic.stanza :23.0

The file position stanzaprojects/lessbasic.stanza:13.18 tells us that the error occurred in the
reference to xs[i] in sum-integers. Stanza is saying that it was expecting xs[i] to be an Int because
you promised that xs is an Array<Int>. But xs[i] is not an Int, and so your program is wrong.

In general, a value’s type in Stanza does not directly say what it is. Instead, a value’s type is a contract on
how it should behave. Part of the contract for an Array<Int> is that it should only contain Int objects.
The above program crashed as soon as Stanza determined that xs does not satisfy its contract.

3.6 Operations on Strings

There are many useful operations on String objects available in the core library. We’ll show a few of them
here.

Length

Here’s how to obtain the length of a string.

val s = "Hello World"

length(s)

Retrieve Character

Here’s how to retrieve a given character in a string.

val s = "Hello World"

s[4]

The first character has index 0, and the last character is indexed one less than the length of the string.
There is no function for setting the character in a string because strings are immutable in Stanza.

Convert to String

Here’s how to convert any object into a string.

to-string (42)

Append

Here’s how to form a longer string from appending two strings together.

val s1 = "Hello "

val s2 = "World"

append(s1, s2)

CHAPTER 3. THE LESS BASIC 43

Substring

Here’s how to retrieve a range of characters within a string.

val str = "Hello World"

println(str[4 to 9])

prints out

o Wor

It’s all the characters between index 4 (inclusive) and index 9 (exclusive) in the string.

If we wanted to include the ending index, then we can use the through keyword, just as we’ve learned from
the previous chapter.

println(str[4 through 9])

prints out

o Worl

If we wanted to extract all characters from index 4 until the end of the string, we can use false as the
ending index.

println(str[4 to false])

prints out

o World

Check out the reference documentation for a listing of operations supported by String objects.

3.7 Operations on Tuples

Tuples support a few additional operations for querying its properties.

Length

Here is how to retrieve the length of a tuple.

val t = [4, 42, "Hello"]

length(t)

Retrieve an Element

Here is how to retrieve an element in a tuple at a dynamically calculated index.

val t = [4, 42, "Hello"]

val i = 1 + 1

println(t[i])

prints out

Hello

CHAPTER 3. THE LESS BASIC 44

Note that, in general, a dynamically calculated index is not known until the program actually runs. This
means that Stanza does not try to determine a precise type for the result of t[i]. The resulting type of
t[i] is the union of all the element types in the tuple.

Attempting to compile this

val t = [4, 42, "Hello"]

val x:Int = t[0 + 1]

results in the error

Cannot assign expression of type Int|String to value x with declared type Int.

The tuple t has type [Int, Int, String], and so an arbitrary element at an unknown index has type
Int|String.

To overcome this, you may explicitly cast the result to an Int yourself.

val t = [4, 42, "Hello"]

val x:Int = t[0 + 1] as Int

Check out the reference documentation for a listing of operations supported by tuples.

Tuples of Unknown Length

The type [Int] is a tuple containing one integer, and the type [Int, Int] is a tuple containing two
integers, et cetera. But what if we want to write a function that takes a tuple of any number of integers?

Here is a function that prints out every number in a tuple of integers.

defn print -tuple (t:Tuple <Int >) :

for i in 0 to length(t) do :

println(t[i])

The following

print -tuple([1, 2, 3])

prints out

1

2

3

But the following

print -tuple([1, "Timon "])

fails to compile with the error

Cannot call function print -tuple of type Tuple <Int > -> False with arguments

of type ([Int , String]).

In general, the type Tuple<Type> represents a tuple of unknown length where each element type is of type
Type.

CHAPTER 3. THE LESS BASIC 45

3.8 Packages

Thus far, all of your code has been contained in a single package. When your projects get larger, you’ll
start to feel the need to split up the entire program into smaller isolated components. In Stanza, you would
do this by partitioning your program into multiple packages.

Create a separate file called animals.stanza containing

defpackage animals :

import core

defstruct Dog :

name: String

defstruct Cat :

name: String

defn sound (x:Dog|Cat) :

match(x) :

(x:Dog) : "woof"

(x:Cat) : "meow"

The animals package contains all of our code for handling dogs and cats. It contains the struct definitions
for Dog and Cat, as well as the sound function that returns the sound made by each animal.

Now create a file called mainprogram.stanza containing

defpackage animal -main :

import core

defn main () :

val d = Dog(" Shadow ")

val c = Cat(" Sassy")

println ("My dog %_ goes %_!" % [name(d), sound(d)])

println ("My cat %_ goes %_!" % [name(c), sound(c)])

main()

The animal-main package contains the main code of the program and it will use the animals package as a
library.

Importing Packages

Now compile both of your source files by typing in the terminal

stanza animals.stanza mainprogram.stanza -o animals

Oops! Something’s wrong! Stanza reports these errors.

mainprogram.stanza :5.11: Could not resolve Dog.

mainprogram.stanza :6.11: Could not resolve Cat.

mainprogram.stanza :7.44: Could not resolve sound.

mainprogram.stanza :8.44: Could not resolve sound.

The problem is that our animal-main package never imported the animals package. Packages must be
imported before they can be used. So change

defpackage animal -main :

import core

to

defpackage animal -main :

import core

import animals

CHAPTER 3. THE LESS BASIC 46

and try compiling again. Stanza still reports the same errors.

mainprogram.stanza :5.11: Could not resolve Dog.

mainprogram.stanza :6.11: Could not resolve Cat.

mainprogram.stanza :7.44: Could not resolve sound.

mainprogram.stanza :8.44: Could not resolve sound.

Public Visibility

What’s going on? The problem now is that our animals package did not make any of its definitions public.
By default, definitions are not visible from outside the package it is declared in. To make a definition
visible, you must prefix the definition with the public keyword.

Let’s declare our Dog and Cat structs, and the sound function to be publicly visible.

defpackage animals :

import core

public defstruct Dog :

name: String

public defstruct Cat :

name: String

public defn sound (x:Dog|Cat) :

match(x) :

(x:Dog) : "woof"

(x:Cat) : "meow"

Now the program compiles successfully and prints out

My dog Shadow goes woof!

My cat Sassy goes meow!

Private Visibility

By default, all definitions are private to the package that they are defined in. There is no way to refer to a
private definition from outside the package. This is a very powerful guarantee as it also means that there is
no way for any outside code to depend upon the existence of a private definition.

For example, suppose we rely on a helper function called dog? to help us define the sound function.

defpackage animals :

import core

public defstruct Dog :

name: String

public defstruct Cat :

name: String

defn dog? (x:Dog|Cat) :

match(x) :

(x:Dog) : true

(x:Cat) : false

public defn sound (x:Dog|Cat) :

if dog?(x) : "woof"

else : "meow"

dog? is private to the animals package, so at any time in the future, if we wanted to rename dog? or
remove it, we can safely do so without affecting other code.

CHAPTER 3. THE LESS BASIC 47

3.9 Function Overloading

By this point, we’ve learned about arrays, tuples, strings, and how to retrieve the length of each of them.

val a = Array <Int >(4)

val b = "Timon and Pumbaa"

val c = [1, 2, 3, 4]

length(a) ;Retrieve length of a array

length(b) ;Retrieve length of a string

length(c) ;Retrieve length of a tuple

You simply call the length function. Here is what is happening behind the scenes. The core package
actually contains many functions called length, but they differ in the type of the argument that they
accept.

defn length (x:Array) -> Int

defn length (x:String) -> Int

defn length (x:Tuple) -> Int

When you call length(a), Stanza automatically figures out which length function you are trying to call
based on the type of its argument. a is an array, and so you’re obviously trying to call the length function
that accepts an Array. No other length function would be legal to call! Similarly, b is a string, so the call
to length(b) is obviously a call to the length function that accepts a String. This is a feature called
function overloading and is a key part of Stanza’s object system.

Functions can be overloaded based on the number of arguments that they take, and the types of each
argument. Let’s write our own overloaded function.

defstruct Dog

defstruct Tree

defstruct Captain

defn bark (d:Dog) -> False :

println ("Woof !")

defn bark (t:Tree) -> String :

"Furrowed Cork"

defn bark (c:Captain) -> False :

println ("A teeeen -hut !")

Now let’s try calling each of them. The following

val d = Dog()

val t = Tree()

val c = Captain ()

bark(d)

println(bark(t))

bark(c)

prints out

Woof!

Furrowed Cork

A teeeen -hut!

Notice that the bark function for Tree returns a String, while the bark functions for Dog and Captain

return False. There is no requirement for any of the bark functions to be related or aware of each other.
They can even be declared in separate packages!

3.10 Operator Mapping

In the previous chapter, you were introduced to the basic arithmetic operators. Here we’ll show you a bit
about how they work underneath. The following

CHAPTER 3. THE LESS BASIC 48

val a = 13

val b = 24

a + b

a - b

a * b

a / b

a % b

(- a)

can be rewritten equivalently as

val a = 13

val b = 24

plus(a, b)

minus(a, b)

times(a, b)

divide(a, b)

modulo(a, b)

negate(a)

Thus you can see here that all operators in Stanza are simply syntactic shorthands for specific function
calls. Here is a listing of what each operator expands to.

a + b expands to plus(a, b)

a - b expands to minus(a, b)

a * b expands to times(a, b)

a / b expands to divide(a, b)

a % b expands to modulo(a, b)

(- x) expands to negate(x)

a << b expands to shift -left(a, b)

a >> b expands to shift -right(a, b)

a >>> b expands to arithmetic -shift -right(a, b)

a & b expands to bit -and(a, b)

a | b expands to bit -or(a, b)

a ^ b expands to bit -xor(a, b)

(~ x) expands to bit -not(x)

a == b expands to equal ?(a, b)

a != b expands to not -equal ?(a, b)

a < b expands to less?(a, b)

a <= b expands to less -eq?(a, b)

a > b expands to greater ?(a, b)

a >= b expands to greater -eq?(a, b)

not x expands to complement(x)

Operator Overloading

The benefit to mapping each operator to a function call is that you can very easily reuse these operators
for your own objects. Here is an example struct definition for modeling points on the cartesian plane.

defstruct Point :

x: Double

y: Double

Next let’s define a function called plus that can add together two Point objects.

defn plus (a:Point , b:Point) :

Point(x(a) + x(b), y(a) + y(b))

Let’s try out our function.

defn main () :

val a = plus(Point (1.0 ,3.0) , Point (4.0 ,5.0))

val b = plus(a, Point (7.0 ,1.0))

CHAPTER 3. THE LESS BASIC 49

println ("b is (%_, %_)" % [x(b), y(b)])

main()

The above prints out

b is (12.000000000000000 , 9.000000000000000)

But, as mentioned, the + operator is a shorthand for calling the plus function. So our main function can
be written more naturally as

defn main () :

val a = Point (1.0 ,3.0) + Point (4.0 ,5.0)

val b = a + Point (7.0 ,1.0)

println ("b is (%_, %_)" % [x(b), y(b)])

Get and Set

Two other operators that we have been using without being aware of it are the get and set operators. The
following code

val a = Array <Int >(4)

a[0] = 42

a[0]

is equivalent to

val a = Array <Int >(4)

set(a, 0, 42)

get(a, 0)

Thus the a[i] form expands to calls to the get function.

a[i] expands to get(a, i)

a[i, j] expands to get(a, i, j)

a[i, j, k] expands to get(a, i, j, k)

etc ...

And the a[i] = v form expands to calls to the set function.

a[i] = v expands to set(a, i, v)

a[i, j] = v expands to set(a, i, j, v)

a[i, j, k] = v expands to set(a, i, j, k, v)

etc ...

3.11 Vectors

So far we’ve only called the library functions in the core package. The collections package contains
commonly used datastructures useful for daily programming.

Here is a program that imports the collections package and creates and prints a Vector object.

defpackage mypackage :

import core

import collections

defn main () :

val v = Vector <Int >()

add(v, 1)

add(v, 2)

add(v, 3)

CHAPTER 3. THE LESS BASIC 50

println(v)

main()

It prints out

[1 2 3]

A Vector object is similar to an array and represents a mutable collection of items where each item is
associated with an integer index. However, whereas arrays are of fixed length, a vector can grow and shrink
to accomodate more or less items.

The type of the v vector in the example above is

Vector <Int >

indicating that it is a vector for storing integers.

Here is how to add additional elements to the end of a vector.

add(v, 42)

Here is how to retrieve and remove the element at the end of the vector.

pop(v)

Identical to the case of arrays, here is how to retrieve the length of a vector, retrieve a value at a particular
index, and assign a value to a particular index.

length(v) ;Retrieve a vector ’s length

v[0] = 42 ;Assign a value to index 0

v[0] ;Retrieve the value at index 0

3.12 HashTables

Hash tables are another commonly used datastructure in the collections package. A table associates a
value object with a particular key object. It can be imagined as a two-column table (hence the name)
where the left column is named keys and the right column is named values. Each entry in the table is
recorded as a new row. The key object is recorded in the keys column, and its corresponding value object
is recorded in the values column.

Here is how to create a HashTable where strings are used as keys, and integers are used as values.

val num -pets = HashTable <String ,Int >()

num -pets["Luca"] = 2

num -pets[" Patrick "] = 1

num -pets["Emmy"] = 3

println(num -pets)

The above prints out

[" Patrick" => 1 "Luca" => 2 "Emmy" => 3]

Creation

The function

HashTable <String ,Int >()

CHAPTER 3. THE LESS BASIC 51

creates a new hash table that associates integer values with string keys. The type of the table created by
the above function is

HashTable <String ,Int >

which indicates that it is a hash table whose keys have type String and whose values have type Int.

Set

The calls to set

num -pets["Luca"] = 2

num -pets[" Patrick "] = 1

num -pets["Emmy"] = 3

associates the value 2 with the key ”Luca” in the table, the value 1 with ”Patrick”, and the value 3 with
”Emmy”.

Get

Here’s how to retrieve the value associated with a key.

println ("Emmy has %_ pets." % [num -pets["Emmy "]])

which prints out

Emmy has 3 pets.

Does a Key Exist?

Attempting to retrieve the value in a table corresponding to a key that doesn’t exist is a fatal error. Use
the key? function to check whether a key exists in the table.

if key?(num -pets , "George ") :

println (" George has %_ pets." % [num -pets[" George "]])

else :

println ("I don ’t know how many pets George has .")

Default Values

A hash table can also be created with a default value. If a hash table has a default value, then this default
value is returned when retrieving the corresponding value for a key that does not exist in the table.
Change the definition of num-pets to

val num -pets = HashTable <String ,Int >(0)

Now when we retrieve the number of pets owned by George,

println (" George has %_ pets." % [num -pets[" George "]])

it prints out

George has 0 pets.

CHAPTER 3. THE LESS BASIC 52

3.13 KeyValue Pairs

A KeyValue object represents an association between a key object and a value object. It can be created
using the KeyValue function.

val kv = KeyValue(4, "Hello")

creates a KeyValue object that represents the mapping from the key 4 to the value "Hello". This is done
very commonly, so Stanza also provides a convenient operator. The above can be written equivalently as

val kv = 4 => "Hello"

The type of the kv object created above is

KeyValue <Int ,String >

which indicates that it represents an association between a key of type Int and a value of type String.

The key and the value objects in a KeyValue object can be retrieved using the key and value functions
respectively.

key(kv) ;Retrieve the key

value(kv) ;Retrieve the value

3.14 For Loops over Sequences

Thus far you’ve only been shown how to use the for construct for simple counting loops. Here you’ll see
how the for construct generalizes to all types of collections.

The for loop can be used to iterate directly through the items of an array like so.

val xs = Array <Int >(4)

xs[0] = 2

xs[1] = 42

xs[2] = 7

xs[3] = 1

for x in xs do :

println(x)

which prints out

2

42

7

1

General Form

Here is the general form.

for x in xs do :

body

For each item in the collection xs, the for loop executes body once with x bound to the next item in the
collection. In our example, xs contains the numbers 2, 42, 7, and 1, and thus body is executed once each
with x bound to 2, 42, 7, and finally 1.

CHAPTER 3. THE LESS BASIC 53

Examples of Collections

We will more precisely specify what constitutes a collection later. For now, just accept that arrays, vectors,
and tuples are collections, and strings are collections of characters. For example,

for c in "Timon" do :

print("Next char is ")

println(c)

prints out

Next char is T

Next char is i

Next char is m

Next char is o

Next char is n

And similarly,

for x in [1, 3, "Timon"] do :

print("Next item is ")

println(x)

prints out

Next item is 1

Next item is 3

Next item is Timon

In fact, Range objects are collections of integers, so the counting loops we saw before are actually just a
special case of iterating through the items in a Range.

val r = 0 to 4

for x in r do :

print("Next number is ")

println(x)

prints out

Next number is 0

Next number is 1

Next number is 2

Next number is 3

Tables are also collections, but they are collections of KeyValue objects, each representing one of the
entries in the table. The following

val num -pets = HashTable <String ,Int >()

num -pets["Luca"] = 2

num -pets[" Patrick "] = 1

num -pets["Emmy"] = 3

for entry in num -pets do :

println ("%_ has %_ pets." % [key(entry), value(entry)])

prints out

Patrick has 1 pets.

Luca has 2 pets.

Emmy has 3 pets.

As you can see, Stanza’s for construct is extremely powerful. In truth, the form shown here is still not the
most general form of the for construct. We’ll learn about that after we’ve covered first class functions.

CHAPTER 3. THE LESS BASIC 54

3.15 Extended Example: Complex Number Package

In this extended example, we will implement a package for creating and performing arithmetic with
complex numbers.

The Complex Package

Create a file called complex.stanza with the following content.

defpackage complex :

import core

public defstruct Cplx :

real: Double

imag: Double

This struct will be our representation for complex numbers. It is stored in cartesian form and has real and
imaginary components.

Printing Complex Numbers

To be able to print Cplx objects, we provide a custom print method.

defmethod print (o:OutputStream , x:Cplx) :

if imag(x) >= 0.0 :

print(o, "%_ + %_i" % [real(x), imag(x)])

else :

print(o, "%_ - %_i" % [real(x), (- imag(x))])

Main Driver

To test our program thus far, create a file called complexmain.stanza with the following content.

defpackage complex/main :

import core

import complex

defn main () :

val a = Cplx (1.0, 5.0)

val b = Cplx (3.0, -4.0)

println(a)

println(b)

main()

Compile and run the program by typing the following in the terminal.

stanza complex.stanza complexmain.stanza -o cplx

./cplx

It should print out

1.000000000000000 + 5.000000000000000i

3.000000000000000 - 4.000000000000000i

Great! So now we can create and print out complex numbers. If you’re an electrical engineer, you may
substitute i for j in the print method.

CHAPTER 3. THE LESS BASIC 55

Arithmetic Operations

The next step is to implement the standard arithmetic operations for complex numbers. Pull out your old
algebra textbooks and look up the formulas. Or pick up a pencil and derive them yourself.

public defn plus (a:Cplx , b:Cplx) :

Cplx(real(a) + real(b), imag(a) + imag(b))

public defn minus (a:Cplx , b:Cplx) :

Cplx(real(a) - real(b), imag(a) - imag(b))

public defn times (a:Cplx , b:Cplx) :

val x = real(a)

val y = imag(a)

val u = real(b)

val v = imag(b)

Cplx(x * u - y * v, x * v + y * u)

public defn divide (a:Cplx , b:Cplx) :

val x = real(a)

val y = imag(a)

val u = real(b)

val v = imag(b)

val den = u * u + v * v

Cplx((x * u + y * v) / den , (y * u - x * v) / den)

Let’s test out our operators.

defn main () :

val a = Cplx (1.0, 5.0)

val b = Cplx (3.0, -4.0)

println ("(%_) + (%_) = %_" % [a, b, a + b])

println ("(%_) - (%_) = %_" % [a, b, a - b])

println ("(%_) * (%_) = %_" % [a, b, a * b])

println ("(%_) / (%_) = %_" % [a, b, a / b])

main()

The program prints out

(1.000000000000000 + 5.000000000000000i) + (3.000000000000000 - 4.000000000000000i)

= 4.000000000000000 + 1.000000000000000i

(1.000000000000000 + 5.000000000000000i) - (3.000000000000000 - 4.000000000000000i)

= -2.000000000000000 + 9.000000000000000i

(1.000000000000000 + 5.000000000000000i) * (3.000000000000000 - 4.000000000000000i)

= 23.000000000000000 + 11.000000000000000i

(1.000000000000000 + 5.000000000000000i) / (3.000000000000000 - 4.000000000000000i)

= -0.680000000000000 + 0.760000000000000i

which looks right to me!

Root Finding

Armed with our new complex number package, let’s now put it to good use and solve an equation. We will
use the Newton-Raphson method to solve the following equation.

x ^ 3 - 1 = 0

Here is our numerical solver which takes an initial guess, x0, and the number of iterations, num-iter, and
performs num-iter number of Newton-Raphson iterations to find the root of the equation.

defn newton -raphson (x0:Cplx , num -iter:Int) :

var xn = x0

for i in 0 to num -iter do :

xn = xn - (xn * xn * xn - Cplx (1.0 ,0.0)) / (Cplx (3.0 ,0.0) * xn * xn)

xn

CHAPTER 3. THE LESS BASIC 56

Let’s test it!

defn main () :

println(newton -raphson(Cplx (1.0 ,1.0) , 100))

The program prints out

1.000000000000000 + 0.000000000000000i

which is indeed one of the solutions to the equation! Fantastic!

Find all the Roots!

But according to the Fundamental Theorem of Algebra, the equation should have two more solutions.
Different initial guesses will converge to different solutions so let’s try a whole bunch of different guesses
and try to find them all.

Here is a function that takes in a tuple of initial guesses and tries them all.

defn guess (xs:Tuple <Cplx >) :

for x in xs do :

val r = newton -raphson(x, 100)

println (" Initial guess %_ gave us solution %_." % [x, r])

And let’s call it with a bunch of random guesses.

defn main () :

guess([Cplx (1.0 ,1.0) , Cplx (2.0 ,2.0) , Cplx (-1.0,3.0), Cplx (-1.0 , -1.0)])

The program prints out

Initial guess 1.000000000000000 + 1.000000000000000i gave

us solution 1.000000000000000 + 0.000000000000000i.

Initial guess 2.000000000000000 + 2.000000000000000i gave

us solution 1.000000000000000 + 0.000000000000000i.

Initial guess -1.000000000000000 + 3.000000000000000i gave

us solution -0.500000000000000 + 0.866025403784439i.

Initial guess -1.000000000000000 - 1.000000000000000i gave

us solution -0.500000000000000 - 0.866025403784439i.

Thus the three solutions to the equation are 1, -0.5 + 0.866i, and -0.5 - 0.866i. Problem solved!

Chapter 4

Architecting Programs

Stanza’s object system differs significantly from most other programming languages. Most other languages
(e.g. Java, C#, Python, Ruby, Objective-C, C++, Swift, Scala, OCaml, etc.) employ a class based object
system. In a class based object system, each thing in the program is represented using a class. For each
ability that a thing has, the user adds another method to its class. Classes have all the power in a
class-based object system. Methods live inside classes.

In contrast, Stanza employs a class-less object system. In Stanza, each thing is represented as a type.
There is a minimal set of fundamental operations that defines the behaviour of a type. After that,
everything that can be done with each thing is implemented as a simple function. Both types and functions
have equal standing. Types do not live inside functions, nor do functions live inside types. The careful
balance between these constructs is what gives Stanza its flexibility and architectural power.

4.1 A Shape Library

In shapes.stanza, let’s create a package for creating and manipulating two-dimensional shapes.

defpackage shapes :

import core

import math

public defstruct Point :

x: Double

y: Double

public defstruct Circle :

x: Double

y: Double

radius: Double

public defn area (s:Point|Circle) -> Double :

match(s) :

(s:Point) : 0.0

(s:Circle) : PI * radius(s) * radius(s)

defmethod print (o:OutputStream , p:Point) :

print(o, "Point (%_, %_)" % [x(p), y(p)])

defmethod print (o:OutputStream , c:Circle) :

print(o, "Circle (%_, %_, radius = %_)" % [x(c), y(c), radius(c)])

The shapes package contains struct definitions for points and circles, methods for printing them, as well as
an area function for computing the areas of these shapes. It imports the math package to access the

57

CHAPTER 4. ARCHITECTING PROGRAMS 58

definition of the mathematical constant PI.

In shapes-main.stanza, as our main program, let’s compute the total area of a bunch of shapes.

defpackage shapes/main :

import core

import collections

import shapes

defn total -area (ss:Vector <Point|Circle >) :

var total = 0.0

for s in ss do :

total = total + area(s)

total

defn main () :

val ss = Vector <Point|Circle >()

add(ss , Point (1.0, 1.0))

add(ss , Circle (2.0, 2.0, 3.0))

add(ss , Circle (3.0, 0.0, 1.0))

println (" Shapes :")

println(ss)

println (" Total area = %_" % [total -area(ss)])

main()

Compile and run the program by typing the following in the terminal.

stanza shapes.stanza shapes -main.stanza -o shapes

./ shapes

It should print out

Shapes:

[Point (1.000000000000000 , 1.000000000000000)

Circle (2.000000000000000 , 2.000000000000000 , radius = 3.000000000000000)

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)]

Total area = 31.415926535897931

4.2 Creating a New Shape

Our shapes package supports points and circles, but let’s now extend it to support rectangles. What do we
need to change in order to support another shape?

1. First we need to define a Rectangle struct for representing rectangles.

2. Next we need to provide custom printing behavior for rectangles.

3. We need to change area’s type signature to now accept a Point|Circle|Rectangle.

4. We need to add another branch to the implementation of area to support rectangles.

5. We need to change total-area’s type signature to now accept a Vector<Point|Circle|Rectangle>.

6. We need to change how ss is created to allow it to also hold rectangles.

The first two items are straightforward so let’s do that immediately.

public defstruct Rectangle :

x: Double

y: Double

width: Double

height: Double

defmethod print (o:OutputStream , r:Rectangle) :

print(o, "Rectangle (%_, %_, size = %_ x %_)" %

CHAPTER 4. ARCHITECTING PROGRAMS 59

[x(r), y(r), width(r), height(r)])

A rectangle is defined by the coordinates of its bottom-left corner and its width and height.

The other items on the list are not hard to implement at present but it is clear that it is not a sustainable
strategy. Here’s how it would look. area in the shapes package is updated to

public defn area (s:Point|Circle|Rectangle) -> Double :

match(s) :

(s:Point) : 0.0

(s:Circle) : PI * radius(s) * radius(s)

(s:Rectangle) : width(s) * height(s)

total-area in the shapes/main package is updated to

defn total -area (ss:Vector <Point|Circle|Rectangle >) :

var total = 0.0

for s in ss do :

total = total + area(s)

total

And the creation of ss in the main function is updated to

val ss = Vector <Point|Circle|Rectangle >()

It is not a pretty solution. Imagine if we had ten more types shapes to define. area’s type signature would
quickly become unwieldy as we tack on more and more types to the argument. Every new shape requires
manually editing the internals of the area function. Currently area is the only function defined on shapes,
but what if there were a dozen more? Would we have to manually edit the internals of each of them?

By far, the worst aspect of the solution is the need to update the definition of the user’s total-area

function and ss vector. The user simply wants total-area to accept a vector of shapes. Which shapes?
Well, any shape! There must be a better way to express that than an explicit union containing the names
of every single type of shape currently defined.

4.3 Subtyping

Here is the definition of a new type called Shape.

public deftype Shape

A Shape is a general representation of a two-dimensional shape. If an object has type Shape, then we know
that it is definitely a shape, though we may not know which particular shape it is.

Here is how to annotate our Point struct as being a subtype of Shape.

public defstruct Point <: Shape :

x: Double

y: Double

This annotation tells Stanza that all points are shapes. Thus if we write a function that requires Shape

objects,

defn its -a-shape (s:Shape) :

println ("%_ is a shape !" % [s])

then we are allowed to pass it Point objects. The following

its -a-shape(Point (1.0, 2.0))

compiles correctly and prints out

CHAPTER 4. ARCHITECTING PROGRAMS 60

Point (1.000000000000000 , 2.000000000000000) is a shape!

Note, however, that though all points are shapes, not all shapes are points. Thus if we write a function
that requires Point objects,

defn its -a-point (p:Point) :

println ("%_ is a point !" % [p])

and try it to call it with a Shape object,

var s:Shape

its -a-point(s)

Stanza will give the following error.

Cannot call function its -a-point of type Point -> False with arguments

of type (Shape).

Thus the relationship

Point <: Shape

says that Point is a subtype of Shape, meaning that all Point objects are also Shape objects (but not vice
versa).

Code Cleanup

Now that we have a definition for Shape, let’s indicate this relationship for all of our shape structs.

public defstruct Point <: Shape :

x: Double

y: Double

public defstruct Circle <: Shape :

x: Double

y: Double

radius: Double

public defstruct Rectangle <: Shape :

x: Double

y: Double

width: Double

height: Double

Now all of our shape structs are also subtypes of Shape. This allows us to clean up many of the type
signatures, both in the shapes package and in the shapes/main package.

The type signature for area is simplified.

public defn area (s:Shape) -> Double :

match(s) :

(s:Point) : 0.0

(s:Circle) : PI * radius(s) * radius(s)

(s:Rectangle) : width(s) * height(s)

The type signature for total-area is simplified.

defn total -area (ss:Vector <Shape >) :

var total = 0.0

for s in ss do :

total = total + area(s)

total

And the creation of ss is simplified.

CHAPTER 4. ARCHITECTING PROGRAMS 61

val ss = Vector <Shape >()

Notice that with these simplifications, items 3, 5, and 6 on our checklist for creating new shapes are no
longer necessary.

4.4 Multis and Methods

Our shape package is architecturally fairly complete at this point. It currently supports points, circles and
rectangles, and we can calculate the area of each of them. If we need another shape, e.g. lines, then all we
have to do is define a Line struct and edit area to support Line objects.

The Need for Extensibility

There remains one limitation to our shapes library however. Suppose that we are the authors and
maintainers in charge of the shapes library, and that there are many users who use the shapes package for
their daily work. What should a user do if our library does not support a shape that he needs? This is a
likely scenario, because it is implausible for us to have fully considered the shape needs of every user. And
often, some user’s needs are so specific that we don’t want to support it in the standard shapes library. It
will just end up cluttering the library and confusing the rest of the users. For example, it seems
inappropriate to support the Salinon shape in the standard library.

What we can do however, is to allow users to define their own shapes. Then typical users can stay content
using the standard shapes in the library, and power users can define their own shapes for their own use.

Users can almost do this. They can create their own shape struct, and provide custom printing behaviour
for it. Let us portray here a user working on greek architecture, and who has started defining his own
extensions to the shape library in the file greek-shapes.stanza.

defpackage greek -shapes :

import core

import shapes

public defstruct Salinon <: Shape :

x: Double

y: Double

outer -radius: Double

inner -radius: Double

defmethod print (o:OutputStream , s:Salinon) :

print(o, "Salinon (%_, %_, outer -radius = %_, inner -radius = %_)" % [

x(s), y(s), outer -radius(s), inner -radius(s)])

The problem though is that the user has no way of extending area to support Salinon shapes, because
that would require editing the code in the shapes package, which he does not have access to.

defmulti and defmethod

The solution is to declare area not as a function but as a multi.

public defmulti area (s:Shape) -> Double

Note that the definition of a multi does not include a body. It simply says that area is a multi that when
called with a Shape returns a Double.

Here is how to attach a method to a multi.

CHAPTER 4. ARCHITECTING PROGRAMS 62

defmethod area (p:Point) -> Double :

0.0

This definition tells Stanza that when the area multi is called on a Point then simply return 0.0.

Here are the methods for area for circles and rectangles.

defmethod area (c:Circle) :

PI * radius(c) * radius(c)

defmethod area (r:Rectangle) :

width(r) * height(r)

Notice that similar to functions, if the return type is not given, then it is inferred from the method body.

A multi can have any number of methods, and the methods can be distributed across any number of
packages and source files. Thus our greek architect can now define a method for area for Salinon shapes
in his own greek-shapes package.

defpackage greek -shapes :

import core

import shapes

import math

...

defmethod area (s:Salinon) :

val r = outer -radius(s) + inner -radius(s)

PI * r * r / 4.0

You’ll just have to trust me on the area of a salinon.

Let’s go back to our main program now and include a couple of salinons in our ss vector.

defpackage shapes/main :

import core

import collections

import shapes

import greek -shapes

...

defn main () :

val ss = Vector <Shape >()

add(ss , Point (1.0, 1.0))

add(ss , Circle (2.0, 2.0, 3.0))

add(ss , Circle (3.0, 0.0, 1.0))

add(ss , Salinon (0.0, 0.0, 10.0, 5.0))

add(ss , Salinon (5.0, -1.0, 8.0, 7.0))

println (" Shapes :")

println(ss)

println (" Total area = %_" % [total -area(ss)])

...

Compile and run the program by typing

stanza shapes.stanza greek -shapes.stanza shapes -main.stanza -o shapes

./ shapes

The program should print out

Shapes:

[Point (1.000000000000000 , 1.000000000000000)

Circle (2.000000000000000 , 2.000000000000000 , radius = 3.000000000000000)

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Salinon (0.000000000000000 , 0.000000000000000 ,

CHAPTER 4. ARCHITECTING PROGRAMS 63

outer -radius = 10.000000000000000 , inner -radius = 5.000000000000000)

Salinon (5.000000000000000 , -1.000000000000000 ,

outer -radius = 8.000000000000000 , inner -radius = 7.000000000000000)]

Total area = 384.845100064749658

The following listing contains the complete program.

Program Listing

In shapes.stanza

defpackage shapes :

import core

import math

public deftype Shape

public defstruct Point <: Shape :

x: Double

y: Double

public defstruct Circle <: Shape :

x: Double

y: Double

radius: Double

public defstruct Rectangle <: Shape :

x: Double

y: Double

width: Double

height: Double

defmethod print (o:OutputStream , p:Point) :

print(o, "Point (%_, %_)" % [x(p), y(p)])

defmethod print (o:OutputStream , c:Circle) :

print(o, "Circle (%_, %_, radius = %_)" % [x(c), y(c), radius(c)])

defmethod print (o:OutputStream , r:Rectangle) :

print(o, "Rectangle (%_, %_, size = %_ x %_)" %

[x(r), y(r), width(r), height(r)])

public defmulti area (s:Shape) -> Double

defmethod area (p:Point) -> Double :

0.0

defmethod area (c:Circle) :

PI * radius(c) * radius(c)

defmethod area (r:Rectangle) :

width(r) * height(r)

In greek-shapes.stanza

defpackage greek -shapes :

import core

import shapes

import math

public defstruct Salinon <: Shape :

x: Double

y: Double

outer -radius: Double

inner -radius: Double

CHAPTER 4. ARCHITECTING PROGRAMS 64

defmethod print (o:OutputStream , s:Salinon) :

print(o, "Salinon (%_, %_, outer -radius = %_, inner -radius = %_)" % [

x(s), y(s), outer -radius(s), inner -radius(s)])

defmethod area (s:Salinon) :

val r = outer -radius(s) + inner -radius(s)

PI * r * r / 4.0

In shapes-main.stanza

defpackage shapes/main :

import core

import collections

import shapes

import greek -shapes

defn total -area (ss:Vector <Shape >) :

var total = 0.0

for s in ss do :

total = total + area(s)

total

defn main () :

val ss = Vector <Shape >()

add(ss , Point (1.0, 1.0))

add(ss , Circle (2.0, 2.0, 3.0))

add(ss , Circle (3.0, 0.0, 1.0))

add(ss , Salinon (0.0, 0.0, 10.0, 5.0))

add(ss , Salinon (5.0, -1.0, 8.0, 7.0))

println (" Shapes :")

println(ss)

println (" Total area = %_" % [total -area(ss)])

main()

4.5 Default Methods

Our current implementation of area does not have a default method. This means that if we call area with
a shape that has no appropriate method, then the program will crash. Let’s try this by commenting out
the method for computing the areas of salinons and try running our program again.

;defmethod area (s:Salinon) :

; val r = outer -radius(s) + inner -radius(s)

; PI * r * r / 4.0

It should print out

Shapes:

[Point (1.000000000000000 , 1.000000000000000)

Circle (2.000000000000000 , 2.000000000000000 , radius = 3.000000000000000)

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Salinon (0.000000000000000 , 0.000000000000000 ,

outer -radius = 10.000000000000000 , inner -radius = 5.000000000000000)

Salinon (5.000000000000000 , -1.000000000000000 ,

outer -radius = 8.000000000000000 , inner -radius = 7.000000000000000)]

FATAL ERROR: No matching branch.

at shapes.stanza :31.16

at shapes -main.stanza :10.22

at core/collections.stanza :182.15

at core/core.stanza :4042.16

at shapes -main.stanza :9.15

at shapes -main.stanza :22.32

at shapes -main.stanza :24.0

CHAPTER 4. ARCHITECTING PROGRAMS 65

Let’s instead provide a default method that is called when no other method matches. Add the following
method to the shapes package

defmethod area (s:Shape) :

println ("No appropriate area method for %_." % [s])

println (" Returning 0.0.")

0.0

and run the program again. It should now print out

Shapes:

[Point (1.000000000000000 , 1.000000000000000)

Circle (2.000000000000000 , 2.000000000000000 , radius = 3.000000000000000)

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Salinon (0.000000000000000 , 0.000000000000000 ,

outer -radius = 10.000000000000000 , inner -radius = 5.000000000000000)

Salinon (5.000000000000000 , -1.000000000000000 ,

outer -radius = 8.000000000000000 , inner -radius = 7.000000000000000)]

No appropriate area method for

Salinon (0.000000000000000 , 0.000000000000000 ,

outer -radius = 10.000000000000000 , inner -radius = 5.000000000000000).

Returning 0.0.

No appropriate area method for

Salinon (5.000000000000000 , -1.000000000000000 ,

outer -radius = 8.000000000000000 , inner -radius = 7.000000000000000).

Returning 0.0.

Total area = 31.415926535897931

Default methods are often used to return a default value when no other method is appropriate. Another
common use case for default methods is to provide a slow but general implementation of a certain function
that works on any type in its domain, and then use methods to provide efficient implementations for
specialized types.

4.6 Underneath the Hood

To help you better understand how the multi and method system works, here is what is happening
underneath the hood. When a Stanza program is compiled it searches through all the packages and gathers
up all the methods defined for each multi. In our shapes example, that gives us

public defmulti area (s:Shape) -> Double

defmethod area (s:Shape) :

println ("No appropriate area method for %_." % [s])

println (" Returning 0.0.")

0.0

defmethod area (p:Point) -> Double :

0.0

defmethod area (c:Circle) :

PI * radius(c) * radius(c)

defmethod area (r:Rectangle) :

width(r) * height(r)

defmethod area (s:Salinon) :

val r = outer -radius(s) + inner -radius(s)

PI * r * r / 4.0

These methods are then sorted from most specific to least specific, and the multi is transformed into a
single function with a match expression for selecting which method to call.

public defn area (s:Shape) -> Double :

match(s) :

(p:Point) :

0.0

(c:Circle) :

PI * radius(c) * radius(c)

CHAPTER 4. ARCHITECTING PROGRAMS 66

(r:Rectangle) :

width(r) * height(r)

(s:Salinon) :

val r = outer -radius(s) + inner -radius(s)

PI * r * r / 4.0

(s:Shape) :

println ("No appropriate area method for %_." % [s])

println (" Returning 0.0.")

0.0

Notice how the default method for Shape is positioned as the last branch in the match expression as it is
the least specific method.

Thus this engine demonstrates that Stanza’s multi and method system can simply be thought of as a way
of writing match expressions but with its branches distributed across multiple packages.

4.7 Intersection Types

Multiple Parent Types

Suppose we have a type called Rollable with the following multi declared.

deftype Rollable

defmulti roll -distance (r:Rollable) -> Double

roll-distance computes the distance traveled by a Rollable object in one revolution.

We now wish to make Circle a subtype of Rollable and provide it an appropriate method for
roll-distance, but Circle is already declared to be a subtype of Shape! The solution is to declare
Circle as both a subtype of Shape and Rollable.

public defstruct Circle <: Shape & Rollable :

x: Double

y: Double

radius: Double

This is an example of using an intersection type. Now we can provide a method for roll-distance on
Circle objects.

defmethod roll -distance (c:Circle) :

2.0 * PI * radius(c)

A circle rolls exactly the length of its diameter in one revolution.

Let’s try it out!

defn try -rolling () :

val c = Circle (0.0, 0.0, 10.0)

println ("The circle %_ rolls %_ units in one revolution ." % [c, roll -distance(c)])

try -rolling ()

Compiling and running the above prints out

The circle Circle (0.000000000000000 , 0.000000000000000 ,

radius = 10.000000000000000)

rolls 62.831853071795862 units in one revolution.

CHAPTER 4. ARCHITECTING PROGRAMS 67

Intersection Types as Arguments

Let’s suppose that we’re about to make a pizza, and we need to choose the shape of its base. Additionally,
we’re experimenting with new pizza delivery methods, and would also like the pizza to be able to roll.

Here’s the function that makes our pizza.

defn make -pizza (base:Shape & Rollable) :

println ("Let ’s make a pizza !")

println ("The base will have shape %_." % [base])

println ("And it will have area %_." % [area(base)])

println ("Plus when we roll it , it travels %_ units!" % [roll -distance(base)])

Because we call area on base we know that the base needs to be a type of Shape object. But we also call
roll-distance on base, and so base will also have to be a type of Rollable object. Thus base is
declared to be both Shape and Rollable.

Let’s try it out!

make -pizza(Circle (0.0, 0.0, 10.0))

Compiling and running the above prints out

Let ’s make a pizza!

The base will have shape Circle (0.000000000000000 , 0.000000000000000 ,

radius = 10.000000000000000).

And it will have area 314.159265358979326.

Plus when we roll it , it travels 62.831853071795862 units!

So circular pizzas will be our first foray into rolling self-delivering pizzas!

The argument that make-pizza requires needs to be both a Shape and a Rollable. We do have other
shapes available that are not Rollable. Here is what happens if we try to make a rectangular pizza for
example.

make -pizza(Rectangle (0.0, 0.0, 5.0, 3.0))

Attempting to compile the above gives us the following error.

Cannot call function make -pizza of type Rollable&Shape -> False

with arguments of type (Rectangle).

Thus Stanza correctly prevents us from attempting to make pizzas out of shapes that don’t roll.

4.8 The Flexibility of Functions

In the beginning of the chapter we said that Stanza’s class-less object system gives you flexibility you
wouldn’t have in a typical class based language. Here is a demonstration of that.

The definition of the Circle struct in the shapes package defines circles using their x and y coordinates,
and their radius. But what if, as a user, we don’t like this convention and instead want to define circles
given a Point to represent their center, and their diameter? Stanza allows us to easily do that.

Here is shape-utils.stanza, which contains a user defined package with his own utilities for managing
shapes.

defpackage shape -utils :

import core

import shapes

public defn Circle (center:Point , diameter:Double) :

Circle(x(center), y(center), diameter / 2.0)

CHAPTER 4. ARCHITECTING PROGRAMS 68

public defn diameter (c:Circle) :

radius(c) * 2.0

public defn center (c:Circle) :

Point(x(c), y(c))

With this package, users can now use circles as if they were defined with a center point and a diameter
instead of a pair of x, and y coordinates and a radius. Let’s update our main function to use this new
convention.

defpackage shapes/main :

import core

import collections

import shapes

import greek -shapes

import shape -utils

...

defn main () :

val ss = Vector <Shape >()

add(ss , Point (1.0, 1.0))

add(ss , Circle(Point (2.0, 2.0), 6.0))

add(ss , Circle(Point (3.0, 0.0), 2.0))

add(ss , Salinon (0.0, 0.0, 10.0, 5.0))

add(ss , Salinon (5.0, -1.0, 8.0, 7.0))

println (" Shapes :")

println(ss)

println (" Total area = %_" % [total -area(ss)])

Run the program to see that it continues to print out the same message as before.

Shapes:

[Point (1.000000000000000 , 1.000000000000000)

Circle (2.000000000000000 , 2.000000000000000 , radius = 3.000000000000000)

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Salinon (0.000000000000000 , 0.000000000000000 ,

outer -radius = 10.000000000000000 , inner -radius = 5.000000000000000)

Salinon (5.000000000000000 , -1.000000000000000 ,

outer -radius = 8.000000000000000 , inner -radius = 7.000000000000000)]

Total area = 384.845100064749658

Note that the center and diameter functions in the shape-utils package are no less ”special” or
”fundamental” than the x, y, and radius functions in the shapes package. Users can use whichever
representation they prefer. Most importantly, adding this functionality did not require the user to
communicate with the authors of the shapes package at all.

We can similarly add support for a new representation of rectangles. Currently, a rectangle is represented
using the x, and y coordinates of its bottom-left corner and its width and height. Let’s add support for
representing rectangles given its bottom-left point and its top-right point.

public defn Rectangle (bottom -left:Point , top -right:Point) :

val w = x(top -right) - x(bottom -left)

val h = y(top -right) - y(bottom -left)

if (w < 0.0) or (h < 0.0) : fatal (" Illegal Rectangle !")

Rectangle(x(bottom -left), y(bottom -left), w, h)

public defn bottom -left (r:Rectangle) :

Point(x(r), y(r))

public defn top -right (r:Rectangle) :

Point(x(r) + width(r), y(r) + height(r))

Again, the bottom-left and top-right functions in the shape-utils package are no less ”fundamental”
than the x, y, width, and height functions in the shapes package.

CHAPTER 4. ARCHITECTING PROGRAMS 69

4.9 Fundamental and Derived Operations

Things in your program are modeled using types in Stanza. Anything than can be done using a type is
implemented as a function (or multi). These operations are further categorized into fundamental and
derived operations.

The area function for Shape objects is an example of a fundamental operation. At least in our shapes
package, a shape is defined by its property of having an area. In fact, the only thing that all shapes have in
common is that you can compute their area. And when defining a new type of shape, users must also
define an appropriate method for area.

Here is an example of a derived operation on shapes.

public defn sort -by -area (xs:Array <Shape >) :

var sorted? = false

while not sorted? :

sorted? = true

for i in 0 to (length(xs) - 1) do :

if area(xs[i + 1]) < area(xs[i]) :

val a = xs[i]

val b = xs[i + 1]

xs[i] = b

xs[i + 1] = a

sorted? = false

This operation allows you to sort an array of shapes by increasing area. By reading its definition, you can
see that it will work on all shapes, because the only operation it requires is the ability to call area. A
derived operation is a function implemented in terms of a type’s fundamental operations.

When defining a new subtype of an existing type, users must implement a small set of fundamental
operations to ensure correct operation of their subtype. In the core library documentation, this set is called
the mandatory minimal implementation.

The typical architecture of a Stanza program is to define a small number of fundamental operations for each
type, coupled with a large library of derived operations. Structuring your program in this way gives you
the most flexibility and extensibility. Adding new derived operations is as simple as defining a new function
and is very easy. Defining new types is also easy as their mandatory minimal implementations are small.

4.10 Multiple Dispatch

The area multi in the shapes package accepts only a single argument, and at runtime it dispatches to the
appropriate method depending on the type of the argument. Stanza places no restriction on the number of
arguments that a multi can take, so users can write multis that dispatches to the appropriate method
depending on the types of multiple arguments. This feature is called multiple dispatch.

We will demonstrate the power of multiple dispatch by writing an overlaps? function that decides whether
two shapes are overlapping. Here is the definition of the multi.

public defmulti overlaps? (a:Shape , b:Shape) -> True|False

It returns true if the shape a overlaps with shape b, or false otherwise.

Points have zero area, so two points overlap only if they are exactly equal to each other.

defmethod overlaps? (a:Point , b:Point) :

(x(a) == x(b)) and (y(a) == y(b))

A circle overlaps with a point if the distance between the point and the center of the circle is less than or
equal to the radius of the circle.

CHAPTER 4. ARCHITECTING PROGRAMS 70

defmethod overlaps? (a:Point , b:Circle) :

val dx = x(b) - x(a)

val dy = y(b) - y(a)

val r = radius(b)

dx * dx + dy * dy <= r * r

Stanza makes no assumption that overlaps? is commutative. So we explicitly tell Stanza that a circle
overlaps with a point if the point overlaps with the circle.

defmethod overlaps? (a:Circle , b:Point) :

overlaps ?(b, a)

Finally, two circles overlap if the center of circle a overlaps with a circle with the same center as circle b

but with radius equal to the sum of both circles.

defmethod overlaps? (a:Circle , b:Circle) :

overlaps ?(Point(x(a), y(a)), Circle(x(b), y(b), radius(b) + radius(a)))

With these definitions, overlaps? completely handles points and circles. Let’s try it out.

defn test -overlap (a:Shape , b:Shape) :

println(a)

if overlaps ?(a, b) : println (" overlaps with")

else : println ("does not overlap with")

println(b)

print ("\n")

defn try -overlaps () :

val pt-a = Point (0.0, 0.0)

val pt-b = Point (0.0, 3.0)

val circ -a = Circle (0.0, 3.0, 1.0)

val circ -b = Circle (3.0, 0.0, 1.0)

val circ -c = Circle (0.0, 0.0, 3.0)

test -overlap(pt-a, pt-b)

test -overlap(circ -a, circ -b)

test -overlap(pt-b, circ -b)

test -overlap(circ -a, pt-b)

test -overlap(circ -c, circ -a)

try -overlaps ()

The above prints out

Point (0.000000000000000 , 0.000000000000000)

does not overlap with

Point (0.000000000000000 , 3.000000000000000)

Circle (0.000000000000000 , 3.000000000000000 , radius = 1.000000000000000)

does not overlap with

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Point (0.000000000000000 , 3.000000000000000)

does not overlap with

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Circle (0.000000000000000 , 3.000000000000000 , radius = 1.000000000000000)

overlaps with

Point (0.000000000000000 , 3.000000000000000)

Circle (0.000000000000000 , 0.000000000000000 , radius = 3.000000000000000)

overlaps with

Circle (0.000000000000000 , 3.000000000000000 , radius = 1.000000000000000)

As an exercise, you may try to implement the rest of the methods required for overlaps? to also work on
rectangles. The brave and adventurous amongst you can try supporting salinons as well.

CHAPTER 4. ARCHITECTING PROGRAMS 71

4.11 Ambiguous Methods

A multi dispatches to the most specific method appropriate for the types of the arguments. However, there
are sometimes multiple methods that are equally specific, and it is ambiguous which method should be
called.

As an example, consider the very strange shape, the Blob. The blob has the very strange property that it
overlaps with no shape, but every shape overlaps with it.

defstruct Blob <: Shape

defmethod print (o:OutputStream , b:Blob) : print(o, "Amorphous Blob")

defmethod overlaps? (a:Blob , b:Shape) : false

defmethod overlaps? (a:Shape , b:Blob) : true

Let’s try it out.

defn try -overlaps () :

val pt-a = Point (0.0, 0.0)

val pt-b = Point (0.0, 3.0)

val circ -a = Circle (0.0, 3.0, 1.0)

val circ -b = Circle (3.0, 0.0, 1.0)

val circ -c = Circle (0.0, 0.0, 3.0)

val blob = Blob()

test -overlap(pt-a, blob)

test -overlap(circ -a, blob)

test -overlap(blob , pt-b)

test -overlap(blob , circ -b)

The program prints out

Point (0.000000000000000 , 0.000000000000000)

overlaps with

Amorphous Blob

Circle (0.000000000000000 , 3.000000000000000 , radius = 1.000000000000000)

overlaps with

Amorphous Blob

Amorphous Blob

does not overlap with

Point (0.000000000000000 , 3.000000000000000)

Amorphous Blob

does not overlap with

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

But the real question is: does a blob overlap with a blob? Let’s see.

defn try -overlaps () :

val pt-a = Point (0.0, 0.0)

val pt-b = Point (0.0, 3.0)

val circ -a = Circle (0.0, 3.0, 1.0)

val circ -b = Circle (3.0, 0.0, 1.0)

val circ -c = Circle (0.0, 0.0, 3.0)

val blob = Blob()

test -overlap(pt-a, blob)

test -overlap(circ -a, blob)

test -overlap(blob , pt-b)

test -overlap(blob , circ -b)

test -overlap(blob , blob)

prints out

Point (0.000000000000000 , 0.000000000000000)

overlaps with

Amorphous Blob

CHAPTER 4. ARCHITECTING PROGRAMS 72

Circle (0.000000000000000 , 3.000000000000000 , radius = 1.000000000000000)

overlaps with

Amorphous Blob

Amorphous Blob

does not overlap with

Point (0.000000000000000 , 3.000000000000000)

Amorphous Blob

does not overlap with

Circle (3.000000000000000 , 0.000000000000000 , radius = 1.000000000000000)

Amorphous Blob

FATAL ERROR: Ambiguous branch.

at shapes.stanza :47.16

at shapes.stanza :71.6

at shapes.stanza :87.3

at shapes.stanza :89.0

Stanza is telling us that there are multiple overlaps? methods that are equally specific for arguments of
type Blob and Blob, and it does not know which one to call. To resolve this, users would have to define an
overlaps? method specifically comparing Blob against Blob.

4.12 Revisiting Print

Now that you’ve been introduced to multis and methods, we can remove some of the mysteries surrounding
the print function. So far, you’ve been told to follow a specific pattern to provide custom printing
behaviour for your custom structs. For example, here is the print method defined for circles.

defmethod print (o:OutputStream , c:Circle) :

print(o, "Circle (%_, %_, radius = %_)" % [x(c), y(c), radius(c)])

But now you can see that it is simply attaching a new method to a multi called print. The print multi is
defined in the core package

defmulti print (o:OutputStream , x) -> False

and takes two arguments. The first is an OutputStream object that represents the target that you’re
printing to. The most common target is the standard output stream, i.e. the user’s terminal. The second
argument is the object that you’re printing.

Thus far, you’ve only provided print methods for more specific types of x in order to print different types
of objects. But later, you’ll see how you can provide print methods for more specific types of o in order to
print to different targets. And all of this works seamlessly due to the power of multiple dispatch.

4.13 The New Expression

The new expression is Stanza’s fundamental construct for creating objects. All objects in Stanza are either
literals (e.g. 1, ’x’, ”Timon”), or are created (directly or indirectly) by the new expression.

Let’s define a type called Stack that represents a stack into which we can push and pop strings. Start a
new file called stack.stanza. Here’s the type definition for Stack and also two multis for the push and
pop operations to which we will later attach methods, and a third multi for checking whether the stack is
empty.

deftype Stack

defmulti push (s:Stack , x:String) -> False

CHAPTER 4. ARCHITECTING PROGRAMS 73

defmulti pop (s:Stack) -> String

defmulti empty? (s:Stack) -> True|False

Let’s provide it with custom printing behaviour.

defmethod print (o:OutputStream , s:Stack) :

print(o, "Stack ")

Now in our main function we will create a single Stack object and print it out.

defn main () :

val s = new Stack

println ("s is a %_." % [s])

main()

Compile the program and run it. It should print out

s is a Stack.

Thus the expression

new Stack

creates a new Stack object. We say that it creates a new instance of type Stack.

But this stack object thus far isn’t terribly useful. The only thing it can do is print itself. Stanza does allow
us to call push and pop on the stack, but it will just crash because we haven’t attached any methods yet.

Instance Methods

The new expression allows us to define instance methods for the object being created. Here is an instance
method for the empty? multi for the stack being created.

defn main () :

val s = new Stack :

defmethod empty? (this) :

true

println ("s is a %_." % [s])

println (" stack is empty? %_." % [empty ?(s)])

main()

We haven’t defined any methods for pushing strings to the stack yet, so the empty? method simply returns
true for now. Compile the program and run it. It should print out

s is a Stack.

stack is empty? true.

The instance method declaration looks similar to the standard method declarations that you’ve already
learned except for one major difference. The this argument is very special. In an instance method
declaration, this refers specifically to the object currently being created by new. In this case, the object
being created is s. So the instance method is saying: if empty? is called on s then return true. Every
instance method must have exactly one argument named this.

In fact, now that we’ve learned about instance methods, let’s redefine the print method as an instance
method for s. Delete the top-level print method, and add the following.

defn main () :

val s = new Stack :

defmethod empty? (this) :

true

defmethod print (o:OutputStream , this) :

CHAPTER 4. ARCHITECTING PROGRAMS 74

print(o, "Stack ")

println ("s is a %_." % [s])

println (" stack is empty? %_." % [empty ?(s)])

main()

Compile and run the program and verify that it prints the same message as before.

The Push and Pop Methods

We will now define the methods for push and pop. The stack contents will be held in an array, and we’ll
keep track of how many items are currently in the stack using a size variable. The array will be of length
10, so the maximum number of strings that the stack can hold is 10. Declare the following within the main

function.

val items = Array <String >(10)

var size = 0

Next we’ll declare the push method. Declare the following within the new expression.

defmethod push (this , x:String) :

if size == 10 : fatal("Stack is full !")

items[size] = x

size = size + 1

The push method first ensures that the stack is not full. Then it stores x in the next slot in the array and
increments the stack’s size by one.

Here’s the corresponding pop method.

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

The pop method first ensures that the stack is not empty. Then it decrements the stack’s size by one, and
returns the top item in the stack.

Here’s the revised empty? method.

defmethod empty? (this) :

size == 0

The stack is empty if its size is zero.

And finally, here’s the revised print method.

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

for i in 0 to size do :

print(o, items[i])

if i < size - 1 :

print(o, " ")

print(o, "]")

It iterates through and prints all the strings currently in the stack.

Putting all the pieces together gives us the following main function. To test the stack, we try pushing and
popping a few strings.

defn main () :

val items = Array <String >(10)

var size = 0

val s = new Stack :

CHAPTER 4. ARCHITECTING PROGRAMS 75

defmethod push (this , x:String) :

if size == 10 : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

for i in 0 to size do :

print(o, items[i])

if i < size - 1 :

print(o, " ")

print(o, "]")

println ("1.")

println(s)

println ("2.")

push(s, "Pumbaa ")

println(s)

println ("3.")

push(s, "and")

push(s, "Timon")

println(s)

println ("4.")

val x = pop(s)

println (" Popped %_ from stack." % [x])

println(s)

println ("5.")

val y = pop(s)

println (" Popped %_ from stack." % [y])

println(s)

main()

Compile and run the program. It should print out

1.

Stack containing []

2.

Stack containing [Pumbaa]

3.

Stack containing [Pumbaa and Timon]

4.

Popped Timon from stack.

Stack containing [Pumbaa and]

5.

Popped and from stack.

Stack containing [Pumbaa]

4.14 Constructor Functions

In the above example, we created a stack called s directly in the main function. You may be thinking that
this seems like a lot of work to create a single stack! What if we need to create multiple stacks?

The solution is to simply move the stack construction code into a new function and call it once for each
stack we want to create. Here is a function called make-stack that accepts a capacity argument for

CHAPTER 4. ARCHITECTING PROGRAMS 76

specifying the maximum size supported by the stack.

defn make -stack (capacity:Int) -> Stack :

val items = Array <String >(capacity)

var size = 0

new Stack :

defmethod push (this , x:String) :

if size == capacity : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

for i in 0 to size do :

print(o, items[i])

if i < size - 1 :

print(o, " ")

print(o, "]")

Let’s change our main function to create two stacks and push different strings into them.

defn main () :

val s1 = make -stack (10)

val s2 = make -stack (10)

println ("1.")

push(s1 , "Timon")

push(s1 , "Pumbaa ")

push(s1 , "Nala")

push(s2 , "Ryu")

push(s2 , "Ken")

push(s2 , "Makoto ")

println(s1)

println(s2)

println ("2.")

println (" Popped %_ from s1." % [pop(s1)])

println (" Popped %_ from s2." % [pop(s2)])

println(s1)

println(s2)

println ("3.")

println (" Popped %_ from s1." % [pop(s1)])

println (" Popped %_ from s2." % [pop(s2)])

println(s1)

println(s2)

main()

Compile and run the program. It should print out

1.

Stack containing [Timon Pumbaa Nala]

Stack containing [Ryu Ken Makoto]

2.

Popped Nala from s1.

Popped Makoto from s2.

Stack containing [Timon Pumbaa]

Stack containing [Ryu Ken]

3.

Popped Pumbaa from s1.

Popped Ken from s2.

Stack containing [Timon]

Stack containing [Ryu]

CHAPTER 4. ARCHITECTING PROGRAMS 77

Notice especially that the two stacks created by the separate calls to make-stack contain different strings
and operate independently of each other.

We call make-stack a constructor function for Stack objects because it returns newly created Stack

objects. If you are familiar with the object systems in other languages it might surprise you to see that
there is nothing particularly special about constructor functions in Stanza. They’re just regular functions.
This lack of distinction between constructors and functions is another contributing factor to Stanza’s
flexibility. Constructors in class based languages are typically more ”special” than regular functions, and
while any user can define functions for a class, only the library’s author can define more constructors for a
class.

As a note on style, we named the constructor function for Stack objects make-stack in order to avoid
confusing you. But the idiomatic Stanza style is to give the same name to the constructor function as the
type of object it is constructing. So make-stack would simply be named Stack, and you will distinguish
based on context whether a reference to Stack refers to the type or the function.

As a reminder, even with the new expression, you are still encouraged to keep the number of fundamental
operations for a type small, and then implement as much functionality as derived operations as possible.

As an exercise, try implementing a function called UnboundedStack that constructs a Stack object with no
maximum capacity. Then try it in place of Stack, and observe that there is no behavioural difference (save
for capacity limitations) between stacks created with UnboundedStack and stacks created with Stack.

4.15 Revisiting Defstruct

defmulti, defmethod, deftype and new forms the fundamental constructs of Stanza’s class-less object
system. The defstruct construct that you have been using thus far is merely a syntactic shorthand for a
specific usage pattern of new. Let’s take a peek at its internals.

Here is a struct definition for a Dog object with a name field and a mutable breed field.

defstruct Dog <: Animal :

name: String

breed: String with: (setter => set -breed)

The above can be equivalently written as

deftype Dog <: Animal

defmulti name (d:Dog) -> String

defmulti breed (d:Dog) -> String

defmulti set -breed (d:Dog , breed:String) -> False

defn Dog (name:String , initial -breed:String) -> Dog :

var breed = initial -breed

new Dog :

defmethod name (this) : name

defmethod breed (this) : breed

defmethod set -breed (this , b:String) : breed = b

Thus, the defstruct construct expands to

1. a type definition,

2. getter functions for each of its fields,

3. setter functions for each of its mutable fields, and

4. a constructor function for creating instances of the type.

Chapter 5

Programming with First-Class
Functions

Stanza fully supports and encourages functional programming, however ”Functional Programming” is
intentionally not the title of this chapter. In the community, the term functional programming has been
used to refer to two different concepts. The first is the concept of programming with first-class functions,
where functions themselves are passed as arguments and stored in datastructures. This is the subject of
this chapter.

The second concept refers to a style of programming revolving around the mathematical definition of
functions; so called pure functions. A pure function is guaranteed to return the same result if called with
the same arguments, and also not affect the environment in any way (e.g. by printing to the terminal).
This style of programming is largely an exercise in manipulating immutable datastructures. It is also a
powerful paradigm and will be the subject of a later chapter.

5.1 Nested Functions

As a gentle introduction to first-class functions we will start with nested functions. We hope the concept
will seem straightforward, and then later we’ll reveal that they are actually quite sophisticated underneath.

Here is a function that sorts an array of integers in increasing order.

defn selection -sort (xs:Array <Int >) :

val n = length(xs)

for i in 0 to (n - 1) do :

var min -idx = i

var min -val = xs[i]

for j in (i + 1) to n do :

if xs[j] < min -val :

min -idx = j

min -val = xs[j]

if i != min -idx :

xs[min -idx] = xs[i]

xs[i] = min -val

Let’s try it out on an array of random numbers.

defn main () :

val xs = Array <Int >(10)

xs[0] = 510

xs[1] = 923

xs[2] = 671

78

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 79

xs[3] = 811

xs[4] = -129

xs[5] = -581

xs[6] = 233

xs[7] = -791

xs[8] = 899

xs[9] = 313

selection -sort(xs)

println(xs)

main()

It should print out

[-791 -581 -129 233 313 510 671 811 899 923]

By reading through the algorithm, you can see that the larger problem of sorting the array is actually
composed of a number of smaller subproblems. For example, the lines

var min -idx = i

var min -val = xs[i]

for j in (i + 1) to n do :

if xs[j] < min -val :

min -idx = j

min -val = xs[j]

compute the index of the minimum element between index i + 1 and index n. The lines

if i != min -idx :

xs[min -idx] = xs[i]

xs[i] = min -val

swaps the element at index i with the element at index min-idx. selection-sort is short enough that we
can still understand the main algorithm even without explicitly dividing the problem into smaller ones.
But as programs get larger, the ability to break up a larger problem into smaller ones is very important.
Nested functions gives us a lot of power for doing this.

Let’s define a nested function, index-of-min, that takes two indices start and end, and returns the index
of the minimum element between indices start (inclusive) and end (exclusive).

defn index -of-min (start:Int , end:Int) :

var min -idx = start

var min -val = xs[start]

for i in (start + 1) to end do :

if xs[i] < min -val :

min -idx = i

min -val = xs[i]

min -idx

Let’s define another nested function, swap, that swaps the element in index i with the element in index j.

defn swap (i:Int , j:Int) :

if i != j :

val xs-i = xs[i]

val xs-j = xs[j]

xs[i] = xs-j

xs[j] = xs-i

And now let’s clean up our selection-sort function using these nested functions.

defn selection -sort (xs:Array <Int >) :

defn index -of-min (start:Int , end:Int) :

var min -idx = start

var min -val = xs[start]

for i in (start + 1) to end do :

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 80

if xs[i] < min -val :

min -idx = i

min -val = xs[i]

min -idx

defn swap (i:Int , j:Int) :

if i != j :

val xs-i = xs[i]

val xs-j = xs[j]

xs[i] = xs-j

xs[j] = xs-i

val n = length(xs)

for i in 0 to (n - 1) do :

swap(i, index -of -min(i, n))

The code is slightly longer than before, but the overall algorithm is much clearer now.

for i in 0 to (n - 1) do :

swap(i, index -of -min(i, n))

In English, it says: iterate with index i starting from 0 and proceeding to the end of the array, and swap
the element at i with the minimum element in the rest of the array.

Notice that the nested functions index-of-min and swap are not merely functions declared within the
body of selection-sort. If you tried to declare them as top-level functions, the program would give you
this error when you try to compile it,

Could not resolve xs.

indicating that xs is not in scope and is not visible to index-of-min or swap. Part of the power of nested
functions rests in them being able to refer to values defined in the function they’re nested in.

Example: Permutations

Here is another example of using nested functions to greatly simplify code. The permutations function
accepts an array of strings and prints out all possible permutations of its contents.

defn permutations (xs:Array <String >) :

val n = length(xs)

defn swap (i:Int , j:Int) :

if i != j :

val xi = xs[i]

val xj = xs[j]

xs[i] = xj

xs[j] = xi

defn permute (i:Int) :

if i < n - 1 :

for j in i to n do :

swap(i, j)

permute(i + 1)

swap(i, j)

else :

println(xs)

permute (0)

It internally relies upon the nested functions swap and permute.

Let’s try it out with these strings.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 81

defn main () :

val xs = to -array <String >([" All" "Dogs" "Are" "Awesome "])

permutations(xs)

main()

When compiled and ran, it prints out

["All" "Dogs" "Are" "Awesome "]

["All" "Dogs" "Awesome" "Are"]

["All" "Are" "Dogs" "Awesome "]

["All" "Are" "Awesome" "Dogs"]

["All" "Awesome" "Are" "Dogs"]

["All" "Awesome" "Dogs" "Are"]

["Dogs" "All" "Are" "Awesome "]

["Dogs" "All" "Awesome" "Are"]

["Dogs" "Are" "All" "Awesome "]

["Dogs" "Are" "Awesome" "All"]

["Dogs" "Awesome" "Are" "All"]

["Dogs" "Awesome" "All" "Are"]

["Are" "Dogs" "All" "Awesome "]

["Are" "Dogs" "Awesome" "All"]

["Are" "All" "Dogs" "Awesome "]

["Are" "All" "Awesome" "Dogs"]

["Are" "Awesome" "All" "Dogs"]

["Are" "Awesome" "Dogs" "All"]

[" Awesome" "Dogs" "Are" "All"]

[" Awesome" "Dogs" "All" "Are"]

[" Awesome" "Are" "Dogs" "All"]

[" Awesome" "Are" "All" "Dogs"]

[" Awesome" "All" "Are" "Dogs"]

[" Awesome" "All" "Dogs" "Are"]

As an exercise, try writing a function called combinations that prints out all combinations of an array of
strings instead of all permutations.

5.2 Functions as Arguments

The selection-sort function in the previous example sorted the array in increasing order. But there are
many ways to sort an array of integers. The following sort-by-abs function sorts the array by their
absolute values.

defn sort -by-abs (xs:Array <Int >) :

defn index -of-min (start:Int , end:Int) :

var min -idx = start

var min -val = xs[start]

for i in (start + 1) to end do :

if abs(xs[i]) < abs(min -val) :

min -idx = i

min -val = xs[i]

min -idx

defn swap (i:Int , j:Int) :

if i != j :

val xs-i = xs[i]

val xs-j = xs[j]

xs[i] = xs-j

xs[j] = xs-i

val n = length(xs)

for i in 0 to (n - 1) do :

swap(i, index -of -min(i, n))

If you replace the call to selection-sort in the main function with sort-by-abs then it now prints out

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 82

[-129 233 313 510 -581 671 -791 811 899 923]

Here is yet another way of sorting an array. The following sort-by-sum-of-digits function sorts the
array by the total sum of their individual digits.

defn sum -of-digits (n:Int) :

if n == 0 : 0

else if n < 0 : sum -of -digits((- n))

else : (n % 10) + sum -of-digits(n / 10)

defn sort -by-sum -of -digits (xs:Array <Int >) :

defn index -of-min (start:Int , end:Int) :

var min -idx = start

var min -val = xs[start]

for i in (start + 1) to end do :

if sum -of -digits(xs[i]) < sum -of-digits(min -val) :

min -idx = i

min -val = xs[i]

min -idx

defn swap (i:Int , j:Int) :

if i != j :

val xs-i = xs[i]

val xs-j = xs[j]

xs[i] = xs-j

xs[j] = xs-i

val n = length(xs)

for i in 0 to (n - 1) do :

swap(i, index -of -min(i, n))

Replacing the call to selection-sort with sort-by-sum-of-digits prints out

[510 313 233 811 -129 671 -581 923 -791 899]

You’ll have noticed by now that the implementation of each sorting function is almost entirely identical
except for one line. Here are the three different comparison functions.

;Compare value directly

xs[i] < min -val

;Compare absolute values

abs(xs[i]) < abs(min -val)

;Compare the sum of their digits

sum -of -digits(xs[i]) < sum -of-digits(min -val)

Couldn’t we somehow write a general sort function and give it a specific way to compare things? We can!
And the solution is to accept a key function that, for each item in the array, computes the value you wish
to sort by.

Here is the general sorting function, sort-by, that accepts a key function key.

defn sort -by (key:Int -> Int , xs:Array <Int >) :

defn index -of-min (start:Int , end:Int) :

var min -idx = start

var min -val = xs[start]

for i in (start + 1) to end do :

if key(xs[i]) < key(min -val) :

min -idx = i

min -val = xs[i]

min -idx

defn swap (i:Int , j:Int) :

if i != j :

val xs-i = xs[i]

val xs-j = xs[j]

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 83

xs[i] = xs-j

xs[j] = xs-i

val n = length(xs)

for i in 0 to (n - 1) do :

swap(i, index -of -min(i, n))

Notice especially the type of the key argument.

Int -> Int

This says that key is a function that accepts a single argument, an Int, and returns an Int.

We can update our main function to sort the array in three different ways by using three different key
functions.

defn identity (x:Int) : x

defn main () :

val xs = Array <Int >(10)

xs[0] = 510

xs[1] = 923

xs[2] = 671

xs[3] = 811

xs[4] = -129

xs[5] = -581

xs[6] = 233

xs[7] = -791

xs[8] = 899

xs[9] = 313

println ("Sort by value directly .")

sort -by(identity , xs)

println(xs)

println ("Sort by absolute value .")

sort -by(abs , xs)

println(xs)

println ("Sort by sum of digits .")

sort -by(sum -of-digits , xs)

println(xs)

main()

Compiling and running the program prints out

Sort by value directly.

[-791 -581 -129 233 313 510 671 811 899 923]

Sort by absolute value.

[-129 233 313 510 -581 671 -791 811 899 923]

Sort by sum of digits.

[510 313 233 811 -129 671 -581 923 -791 899]

Up until now, we have always referred to a function in function call position. For example,

abs(...)

sum -of -digits(...)

But now you see that you can actually refer to functions directly as values to be passed to other functions!

sort -by(abs , xs)

sort -by(sum -of-digits , xs)

Functions that take functions as arguments are called higher-order functions. They are an extremely
powerful programming technique, and you’ll soon see that you’ve already been using them everywhere
without knowing it.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 84

5.3 Functions as Return Values

When a language has first-class functions, it means that functions can be treated as values. In the previous
section we saw how to pass functions as arguments. Now we’ll see how to use functions as return values.

Here’s a function called digit that accepts a single argument n, and returns a function. What the returned
function does is extract and return the n’th significant digit from its argument.

defn digit (n:Int) -> (Int -> Int) :

defn extract -digit (x:Int , n:Int) :

if x < 0 : extract -digit((- x), n)

else if n == 0 : x % 10

else : extract -digit(x / 10, n - 1)

defn extract -digit -n (x:Int) :

extract -digit(x, n)

extract -digit -n

Let’s try it out on some numbers.

defn main () :

val first -digit = digit (0)

val third -digit = digit (2)

defn test -first -digit (x:Int) :

println ("The first digit of %_ is %_." % [x, first -digit(x)])

test -first -digit (413)

test -first -digit (-313)

test -first -digit (41)

test -first -digit (137)

test -first -digit (991)

defn test -third -digit (x:Int) :

println ("The third digit of %_ is %_." % [x, third -digit(x)])

test -third -digit (413)

test -third -digit (-313)

test -third -digit (41)

test -third -digit (137)

test -third -digit (991)

main()

Compiling and running the program prints out

The first digit of 413 is 3.

The first digit of -313 is 3.

The first digit of 41 is 1.

The first digit of 137 is 7.

The first digit of 991 is 1.

The third digit of 413 is 4.

The third digit of -313 is 3.

The third digit of 41 is 0.

The third digit of 137 is 1.

The third digit of 991 is 9.

The type signature of digit is daunting at first.

defn digit (n:Int) -> (Int -> Int)

Let’s decipher it piece by piece. digit is a function that takes a single Int argument, and returns a (Int

-> Int). And we learned previously that a (Int -> Int) is a one argument function that takes an Int

and returns an Int. The parentheses around Int -> Int is not strictly necessary as -> is a
right-associative operator. Thus, digit can also be declared the following way.

defn digit (n:Int) -> Int -> Int

Write it in the way that is most clear to you. As an exercise, think about what the type of digit is.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 85

Sorting By Digit

Now that we have a function for creating functions that are compatible with what is expected by sort-by,
let’s use sort-by to sort by different digits. Update the main function in our previous example.

defn main () :

val xs = Array <Int >(10)

xs[0] = 510

xs[1] = 923

xs[2] = 671

xs[3] = 811

xs[4] = -129

xs[5] = -581

xs[6] = 233

xs[7] = -791

xs[8] = 899

xs[9] = 313

println ("Sort by value directly .")

sort -by(identity , xs)

println(xs)

println ("Sort by absolute value .")

sort -by(abs , xs)

println(xs)

println ("Sort by sum of digits .")

sort -by(sum -of-digits , xs)

println(xs)

println ("Sort by first digit .")

sort -by(digit (0), xs)

println(xs)

println ("Sort by second digit .")

sort -by(digit (1), xs)

println(xs)

println ("Sort by third digit .")

sort -by(digit (2), xs)

println(xs)

Compile and run the program. It should print out

Sort by value directly.

[-791 -581 -129 233 313 510 671 811 899 923]

Sort by absolute value.

[-129 233 313 510 -581 671 -791 811 899 923]

Sort by sum of digits.

[510 313 233 811 -129 671 -581 923 -791 899]

Sort by first digit.

[510 811 671 -581 -791 233 313 923 -129 899]

Sort by second digit.

[510 811 313 923 -129 233 671 -581 -791 899]

Sort by third digit.

[-129 233 313 510 -581 671 -791 811 899 923]

Isn’t that elegant! This is but a small demonstration of the power of first-class functions.

5.4 Core Library Functions

The sort-by function is so general and useful that you might wonder whether it’s already included in
Stanza’s core library. And it is, along with many other useful higher order functions. We’ll show you a few
of them here.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 86

qsort!

The qsort! function is Stanza’s included sorting function. It implements the quick sort algorithm, and you
can use it sort collections in much the same way that you used the sort-by function. One big difference,
though, is that qsort! works on many different kinds of objects whereas your sort-by function only
worked on Int objects.

val xs = Vector <String >()

add(xs , "Patrick ")

add(xs , "Luca")

add(xs , "Emmy")

add(xs , "Sunny")

add(xs , "Whiskey ")

add(xs , "Rummy")

qsort!(xs)

println(xs)

The above is an example of sorting a vector of strings, and it prints out

["Emmy" "Luca" "Patrick" "Rummy" "Sunny" "Whiskey "]

qsort! can optionally take a key function as its first argument for computing the item with which to sort.
Here’s how to sort the xs vector by the second letter.

defn second -letter (s:String) : s[1]

qsort!(second -letter , xs)

println(xs)

Running the program prints out

[" Patrick" "Whiskey" "Emmy" "Rummy" "Luca" "Sunny"]

The third form of qsort! takes, as its second argument, a comparison function with which to sort by. The
comparison function is given two items from the collection and must return true if the first argument is
less than the second argument, or false otherwise.

Here is an example of sorting a vector containing both integers and strings. Integers are less than other
integers if their numeric value is smaller. Strings are compared against other strings according to their
lexicographic order. And integers are less than strings if the integer is less than the length of the string.

val xs = Vector <Int|String >()

add(xs , 1)

add(xs , 3)

add(xs , "A")

add(xs , "B")

add(xs , 4)

add(xs , -10)

add(xs , "Timon")

add(xs , "Pumbaa ")

add(xs , 42)

defn compare -items (a:Int|String , b:Int|String) :

match(a, b) :

(a:Int , b:Int) : a < b

(a:Int , b:String) : a < length(b)

(a:String , b:Int) : length(a) < b

(a:String , b:String) : a < b

qsort!(xs, compare -items)

println(xs)

Running the program prints out

[-10 1 "A" "B" 3 4 "Pumbaa" "Timon" 42]

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 87

find

The find function looks for the first item in a collection that satisfies a condition. The condition is given
as a function, and takes a single argument representing an item from the collection. The condition function
must return true if the item satisfies the condition, or false otherwise. find returns the item if it is
found, or false otherwise.

Here is an example of looking for the first capitalized word in a vector of strings.

val xs = Vector <String >()

add(xs , "they")

add(xs , "call")

add(xs , "me")

add(xs , "Mr")

add(xs , "Pig")

defn capitalized? (x:String) : upper -case?(x[0])

println(find(capitalized?, xs))

Running the program prints out

Mr

index-when

The index-when function is similar to find, and looks for the first item in a collection that satisfies a
condition. The difference is if the item is found, then index-when returns its index.

Calling index-when instead of find on the previous example

println(index -when(capitalized?, xs))

prints out

3

Maybe Objects and first

A Maybe is used to indicate the presence or absence of an object. A None object is a subtype of Maybe and
indicates there is no object. A One object is a subtype of Maybe and contains a wrapped object. You can
retrieve the wrapped object in a One object using the value function.

The first function takes an argument function, f, and a collection xs, and calls f repeatedly on each item
in the collection. f must return a Maybe object. first returns the first One object that is returned by f, or
a None object if no call to f returns a One object.

Here is an example of using first to find the first even sum of digits in a vector of integers.

val xs = Vector <Int >()

add(xs , 14)

add(xs , 78)

add(xs , 232)

add(xs , 787)

add(xs , 49)

defn even -sum? (x:Int) :

val s = sum -of-digits(x)

if s % 2 == 0 : One(s)

else : None()

match(first(even -sum?, xs)) :

(x:One <Int >) :

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 88

println ("The first even sum of digits is %_." % [value(x)])

(x:None) :

println ("No number in xs has an even sum of digits .")

map!

The map! function takes a function f and an array (or vector) xs. It then iterates through the array and
replaces each item in the array with a call to f on the item.

Here is how to capitalize each entry in a vector of strings using map!.

val xs = Vector <String >()

add(xs , "they")

add(xs , "call")

add(xs , "me")

add(xs , "Mr")

add(xs , "Pig")

defn capitalize (x:String) :

append(upper -case(x[0 to 1]), x[1 to false])

map!(capitalize , xs)

println(xs)

When ran, it prints out

["They" "Call" "Me" "Mr" "Pig"]

all?, any?, none?

all? is used to determine whether every item in a collection satisfies some condition. The all? function
takes a function f and a collection xs. It returns true if calling f on every item in xs returns true. If f
returns false on any item then all? immediately returns false.

Here is how we can use all? to test whether all numbers in xs are positive.

val xs = Vector <Int >()

add(xs , 4)

add(xs , 2)

add(xs , 3)

add(xs , -8)

add(xs , 5)

defn positive? (x:Int) : x > 0

all?(positive?, xs)

The any? and none? functions work similarly. any? determines whether any item satisfies the condition,
and none? determines whether no item satisfies the condition.

do

Finally we get to the most commonly used higher order function of them all: the do function. The do

function takes a function f and a collection xs and calls f on each item in the collection.

Here is how to report the lengths of every string in a vector using do.

val xs = Vector <String >()

add(xs , "they")

add(xs , "call")

add(xs , "me")

add(xs , "Mr")

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 89

add(xs , "Pig")

defn report -length (x:String) :

println ("%_ has length %_." % [x, length(x)])

do(report -length , xs)

When ran, it prints out

they has length 4.

call has length 4.

me has length 2.

Mr has length 2.

Pig has length 3.

At this point, particularly precocious readers might start to suspect that they have already used do in their
programs without knowing it.

5.5 Anonymous Functions

Before the introduction of higher-order functions it was natural for you to give every function in your
program a name. After all, if a function has no name, then how would you call it? But after having been
exposed to higher-order functions, you might now be wondering if it’s possible to avoid giving functions a
name. A lot of functions are now only ever used once, and only as an argument to another higher-order
function.

Anonymous functions are functions without names. Here is report-length from the previous example
written as an anonymous function.

fn (x:String) :

println ("%_ has length %_." % [x, length(x)])

Here is an example of rewriting the do example using an anonymous function.

val xs = Vector <String >()

add(xs , "they")

add(xs , "call")

add(xs , "me")

add(xs , "Mr")

add(xs , "Pig")

do(fn (x:String) :

println ("%_ has length %_." % [x, length(x)])

xs)

Notice how the report-length function is now directly created using fn and passed immediately as an
argument to do. The arguments to higher-order functions are often very short and anonymous functions
provides a convenient syntax for using them.

Bidirectional Type Inference

The type inference rules for anonymous functions are different than those for named functions. For a
named function, if a type annotation is left off of an argument, then the argument is assumed to have the ?

type, and can accept anything. For an anonymous function, if a type annotation is left off of an argument,
then the argument’s type is inferred from the context in which the function is used.

Thus the call to do in the above example could be more concisely written as

do(fn (x) : println ("%_ has length %_." % [x, length(x)])

xs)

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 90

From the context, the type of xs is Vector<String>, and since do calls the function on each item in xs, it
is obvious that x must be of type String.

Idiomatic Stanza code rarely contains type annotations for anonymous functions, and instead relies upon
type inference. In certain circumstances, Stanza will be unable to infer the argument types, in which case
you’ll have to provide them explicitly.

Anonymous Function Shorthand

For extremely short anonymous functions, Stanza provides a syntactic shorthand. The following function

fn (x) : x + 1

can be written equivalently as

{_ + 1}

As another example, the following function

fn (x, y) : x + 2 * y

can be written equivalently as

{_ + 2 * _}

The shorthand consists of surrounding the function body with the {} brackets, and using underscores to
denote arguments. To create anonymous functions with explicit type annotations use the following form.

fn (x:Int , y:String) : x + length(y)

can be written equivalently as

{_:Int + 2 * _:String}

Curried Function Shorthand

For extremely short anonymous functions consisting of a single function call, Stanza provides another
syntactic shorthand. The following function

fn (xs) : qsort!(abs , xs)

can be written equivalently as

qsort!{abs , _}

Similarly, to create anonymous functions with explicit type annotations use the following form.

fn (i:Int) : index -of -min(i, length(xs))

can be written equivalently as

index -of-min{_:Int , length(xs)}

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 91

The Application Operator

With the introduction of anonymous functions, you’ll find that you can implement lots of functionality
using single lines of code. To help with this programming style, Stanza provides the $ operator to help
reduce the number of nested expressions. The expression

f $ x

is equivalent to

f(x)

Thus the $ operator is just a shorthand for function application. Notice, however, that with the $ operator,
the above expression did not require any parentheses.

There is a very common usage pattern involving both curried functions and the $ operator. Here is what it
looks like.

f{x, _} $ y

Let’s remove the syntactic shorthands incrementally to figure out what the above means. First, we will
write out the $ operator in full.

(f{x, _})(y)

Next, we will write out the curried function in full.

(fn (a) : f(x, a))(y)

So the expression, when written in full, just creates an anonymous function and then immediately calls it
with y. Calling the anonymous function is then equivalent to

f(x, y)

Thus the expression

f{x, _} $ y

is equivalent to

f(x, y)

You can think of the $ operator as substituting the right hand side expression in for the underscores in the
left hand side expression.

This usage pattern is often used to chain a long sequence of operations together.

f{1, _} $

head $

g{2, _} $

xs[2]

is a shorthand for writing

val result1 = xs[2]

val result2 = g(2, result1)

val result3 = head(result2)

f(1, result3)

Here is a concrete example of an idiomatic usage of the $ operator. In the demonstration of the qsort!

operator, we explicitly created a compare-items function to pass into qsort!.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 92

defn compare -items (a:Int|String , b:Int|String) :

match(a, b) :

(a:Int , b:Int) : a < b

(a:Int , b:String) : a < length(b)

(a:String , b:Int) : length(a) < b

(a:String , b:String) : a < b

qsort!(xs, compare -items)

But here is another way it can be (and often is) written.

qsort!{xs, _} $ fn (a, b) :

match(a, b) :

(a:Int , b:Int) : a < b

(a:Int , b:String) : a < length(b)

(a:String , b:Int) : length(a) < b

(a:String , b:String) : a < b

Since the types of the arguments of anonymous functions are inferred, there is also no need to provide
explicit type annotations.

5.6 The For Construct

Now that you’ve been introduced to anonymous functions and higher-order functions, we are now ready to
introduce the full for construct. The expression

for x in xs do :

println(x)

is equivalent to

do(fn (x) :

println(x)

xs)

As mentioned before, the for construct is not a looping mechanism. It is a syntactic shorthand for calling
higher-order functions of a certain form. As explained earlier, the do function is what’s responsible for
looping over each element in xs.

The for construct can be called with multiple bindings as well.

for (x in xs, y in ys) do :

println(x + y)

is equivalent to

do(fn (x, y) :

println(x + y)

xs, ys)

Thus, in general, the for construct expands to a call to a higher order function where the first argument is
an anonymous function followed by n remaining arguments. The anonymous function must take n
arguments, one for each of the remaining arguments.

There are forms of the do function that accept multiple collections. The collections are iterated over in
parallel, and iteration stops when it reaches the end of any one of them. The following example prints
every item in a vector coupled with its index.

val xs = Vector <String >()

add(xs , "Patrick ")

add(xs , "Luca")

add(xs , "Emmy")

for (x in xs, i in 0 to false) do :

println (" Element %_ is at index %_." % [x, i])

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 93

It prints out

Element Patrick is at index 0.

Element Luca is at index 1.

Element Emmy is at index 2.

Operating Functions

find, all?, any?, none?, and index-when? also have multiple collection versions that can be used with a
for construct with multiple bindings.

Functions like do, with type signatures compatible with the for construct, are called operating functions.
Stanza’s core library includes a large number of commonly used ones. For more details, read the reference
documentation.

Occasionally, it might also be appropriate to implement your own operating function. Here is an operating
function that first iterates over each odd integer in a vector and then iterates over each even integer in the
vector.

defn do-odd -then -even (f: Int -> ?, xs:Vector <Int >) :

for x in xs do :

if x % 2 != 0 : f(x)

for x in xs do :

if x % 2 == 0 : f(x)

Here is an example of using it in conjunction with the for construct.

val xs = Vector <Int >()

add(xs , 1)

add(xs , 3)

add(xs , 2)

add(xs , 6)

add(xs , 5)

add(xs , 2)

add(xs , 4)

add(xs , 3)

for x in xs do -odd -then -even :

println(x)

Compiling and running the above prints out

1

3

5

3

2

6

2

4

5.7 Stanza Idioms

With our new knowledge of anonymous functions, curried functions, and the for construct, we can now
revisit our examples of using the core library and write them using standard Stanza idioms and functions.

;A vector of strings

val strs = Vector <String >()

add -all(strs , [" patrick", "luca", "emmy", "Sunny", "whiskey", "Rummy "])

;Sort by the second letter

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 94

println ("1.")

qsort !({_[1]}, strs)

println(strs)

;A vector of ints and strings

val int -strs = Vector <Int|String >()

add -all(int -strs , [1, 3, "A", "B", 4, -10, "Timon", "Pumbaa", 42])

;Sort using custom comparison function

println ("\n2.")

qsort!{int -strs , _} $ fn (a, b) :

match(a, b) :

(a:Int , b:Int) : a < b

(a:Int , b:String) : a < length(b)

(a:String , b:Int) : length(a) < b

(a:String , b:String) : a < b

println(xs)

;Find first capitalized word

println ("\n3.")

println $ for s in strs find :

upper -case?(x[0])

;Find index of first capitalized word

println ("\n4.")

println $ for s in strs index -when :

upper -case?(x[0])

;Capitalize every word

println ("\n5.")

for s in strs map! :

append(upper -case(x[0 to 1]), x[1 to false])

println(strs)

;A vector of integers

val ints = Vector <Int >()

add -all(ints , [4, 2, 3, -8, 5])

;Are they all positive?

println ("\n6.")

println $ for x in ints all? :

x > 0

;Report lengths of string along with their index

println ("\n7.")

for (s in strs , i in 0 to false) do :

println ("strs[%_] = %_. Length = %_." % [i, strs[i], length(strs[i])])

Compiling and running all of the above print outs

1.

[" patrick" "whiskey" "emmy" "Rummy" "luca" "Sunny"]

2.

[-10 1 "A" "B" 3 4 "Pumbaa" "Timon" 42]

3.

Rummy

4.

3

5.

[" Patrick" "Whiskey" "Emmy" "Rummy" "Luca" "Sunny"]

6.

false

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 95

7.

strs [0] = Patrick. Length = 7.

strs [1] = Whiskey. Length = 7.

strs [2] = Emmy. Length = 4.

strs [3] = Rummy. Length = 5.

strs [4] = Luca. Length = 4.

strs [5] = Sunny. Length = 5.

5.8 Tail Calls

Consider the following function for computing the sum of all the positive integers less than or equal to n.

defn sum -of (n:Int) :

if n > 0 : n + sum -of(n - 1)

else : 0

Calling sum-of(6) returns 21.

Here’s a visualization of the execution context as that operation is being performed.

sum -of(6) =

6 + sum -of(5) =

6 + 5 + sum -of(4) =

6 + 5 + 4 + sum -of(3) =

6 + 5 + 4 + 3 + sum -of(2) =

6 + 5 + 4 + 3 + 2 + sum -of(1) =

6 + 5 + 4 + 3 + 2 + 1 + sum -of(0) =

6 + 5 + 4 + 3 + 2 + 1 + 0 =

6 + 5 + 4 + 3 + 2 + 1 =

6 + 5 + 4 + 3 + 3 =

6 + 5 + 4 + 6 =

6 + 5 + 10 =

6 + 15 =

21

Observe that the computation of sum-of(6) requires knowing the result of sum-of(5). And so we then
recursively compute the result of sum-of(5) while remembering that we should add 6 to the result to get
the final answer. Similarly, the computation of sum-of(5) requires the result of sum-of(4). Et cetera.

Each recursive invocation of sum-of requires us to remember what to do with the result. This is our
execution context, and in Stanza, is saved in a stack of activation records. How big does this stack get?
Well, for sum-of, it grows to contain exactly n activation records.

This can be verified by forcing a program failure when n is equal to 0 and looking at the stack trace.

defn sum -of (n:Int) :

if n > 0 : n + sum -of(n - 1)

else : fatal("n reached zero .")

When compiled and ran, the above prints out

FATAL ERROR: n reached zero.

at test.stanza :7.10

at test.stanza :6.18

at test.stanza :6.18

at test.stanza :6.18

at test.stanza :6.18

at test.stanza :6.18

at test.stanza :6.18

at test.stanza :9.0

Each test.stanza:6.18 entry in the stack trace refers to a recursive call to sum-of(n - 1). Thus you can
see that there are 6 entries corresponding to calling sum-of(6). activation records take up space. If n is
too large, then eventually the stack of activation records will consume all of your program memory.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 96

An Iterative Algorithm

Now consider this alternative implementation of sum-of.

defn sum -of (n:Int) :

x+sum -of(0, n)

defn x+sum -of (x:Int , n:Int) :

if n > 0 : x+sum -of(x + n, n - 1)

else : x

Here’s a visualization of the execution context of computing sum-of(6).

sum -of(6) =

x+sum -of(0, 6) =

x+sum -of(6, 5) =

x+sum -of(11, 4) =

x+sum -of(15, 3) =

x+sum -of(18, 2) =

x+sum -of(20, 1) =

x+sum -of(21, 0) =

21

Similar to before, the computation of x+sum-of(0, 6) requires knowing the result of x+sum-of(6, 5).
And so we then recursively compute the result of x+sum-of(6, 5). But this time, we don’t have to
remember what to do with the result! The result of x+sum-of(6, 5) is the result of x+sum-of(0, 6), so
just return whatever x+sum-of(6, 5) returns.

In concrete terms, what this means is that Stanza can discard the activation record for x+sum-of(0, 6)

immediately before calling x+sum-of(6, 5) since there’s no context to remember. If that is done, then the
number of activation records does not grow, no matter how large n is. And thus the program will not run
out of memory. This optimization is called tail call optimization.

Tail Call Optimization

By default, Stanza does not optimize tail calls in functions. This is done for the purposes of debugging. It
is useful to have a complete stack trace, even if not strictly necessary for correct operation of the
algorithm. To tell Stanza to optimize tail calls in a function, we have to explicitly declare the function as
being tail call optimized.

defn sum -of (n:Int) :

x+sum -of(0, n)

defn* x+sum -of (x:Int , n:Int) :

if n > 0 : x+sum -of(x + n, n - 1)

else : x

defn* is the tail call optimized version of defn. Similarly, defmethod* is the tail call optimized version of
defmethod, and fn* is the tail call optimized version of fn.

To verify that the stack frames are properly being discarded, we’ll again force the program to fail when n is
equal to 0 and examine the stack trace.

defn* x+sum -of (x:Int , n:Int) :

if n > 0 : x+sum -of(x + n, n - 1)

else : fatal("n reached zero .")

Compiling and running the program prints

FATAL ERROR: n reached zero.

at tests/test.stanza :6.3

at tests/test.stanza :20.10

There are now no stack frames corresponding to x+sum-of. They have all been discarded.

CHAPTER 5. PROGRAMMING WITH FIRST-CLASS FUNCTIONS 97

5.9 Revisiting While

With the introduction of tail calls, it is time for us to unveil the internals of the while loop construct. The
expression

var i = 0

while i < 10 :

println(i)

i = i + 1

is equivalent to

var i = 0

defn* loop () :

if i < 10 :

println(i)

i = i + 1

loop()

loop()

Thus the while construct simply defines a local tail call optimized function and then calls it.

Directly expressing loops using recursive functions can often be much more natural than using a while
loop. A while loop loops by default, and the programmer has to specify when it should stop looping. In
constrast, a recursive function does not loop by default, and the programmer instead specifies when to
perform another iteration.

Here is an example of using a tail call optimized function for finding the index of an integer x in a sorted
vector xs using binary search.

defn bsearch (x:Int , xs:Vector <Int >) :

label <Int|False > return :

defn* loop (start:Int , end:Int) :

if start < end :

val mid = start + (end - start) / 2

if x < xs[mid] : loop(start , mid)

else if x > xs[mid] : loop(mid + 1, end)

else : return(mid)

loop(0, length(xs))

loop finds the index of x, assuming that it exists between the start index and end index (exclusive). It
does this by computing a midpoint, mid, between the two indices. If x is less than the element at mid then
it looks again in the first half of the range. If x is greater than the element at mid then it looks again in the
second half of the range. Otherwise it has found x, and it is at index mid.

Let’s try looking for the numbers 1, 14, and 13.

defn main () :

val xs = Vector <Int >()

add -all(xs , [1,3,4,7,8,11,14,18,20,35])

println(bsearch(1, xs))

println(bsearch (14, xs))

println(bsearch (13, xs))

main()

When compiled and ran, the above prints out

0

6

false

Chapter 6

Programming with Sequences

A sequence is a series of objects. At any point, you may ask whether a sequence is empty, and if it is not
empty you may retrieve the next object. Many datastructures can represent their items as a sequence. For
example, a sequence for representing the items in an array could begin with the item at index 0.
Subsequent items in the sequence would correspond to subsequent items in the array. When it reaches the
end of the array then the sequence is empty.

While sequences are not a core language feature, they do play a fundamental part in the design of Stanza’s
core library. In this chapter we’ll see how to fully exploit their power, and by doing so, avoid having to
repeatedly reimplement many common programming patterns ourselves.

6.1 Fundamental Operations

A sequence is represented by the Seq type in Stanza. Let’s first create a sequence containing all the strings
in a tuple.

val xs = to -seq([" Timon" "and" "Pumbaa" "are" "good" "friends ."])

This creates the sequence xs, which has type Seq<String> indicating that it is a sequence of strings.

Fundamentally, a sequence is defined by three operations.

1. You may ask whether a sequence is empty.

2. You may take a peek at the next item in the sequence.

3. You may take out the next item in the sequence.

Here is how to ask whether our xs sequence is empty.

if empty?(xs) :

println ("xs is empty .")

else :

println ("xs is not empty .")

which prints out

xs is not empty.

because we haven’t taken anything out of the sequence yet.

If the sequence is not empty, then you can take a peek at the next item in the sequence like this.

val x0 = peek(xs)

println ("The next item is %_." % [x0])

98

CHAPTER 6. PROGRAMMING WITH SEQUENCES 99

which prints out

The next item is Timon.

Peeking at an empty sequence is a fatal error.

Peeking at a sequence does not change the state of a sequence. If you peek again at the same sequence, it
returns the same thing.

val x1 = peek(xs)

println ("The next item is still %_." % [x1])

which prints out

The next item is still Timon.

Once you’ve determined that the sequence is not empty, you may take out the next item in the sequence.

val y0 = next(xs)

println ("Took out item %_ from xs." % [y0])

which prints out

Took out item Timon from xs.

Calling next on a sequence does change the state of a sequence. If you call next again on the same
sequence, it will return the following item in the sequence.

val y1 = next(xs)

println ("Now took out item %_ from xs." % [y1])

which prints out

Now took out item and from xs.

Here is the standard pattern for printing out all the items in a sequence.

while not empty?(xs) :

println ("Next item is %_" % [next(xs)])

which prints out

Next item is Timon

Next item is and

Next item is Pumbaa

Next item is are

Next item is good

Next item is friends.

6.2 Writing a Sequence Function

Let’s now write a function that takes a sequence argument. cum-sum takes a sequence of integers, xs, and
returns a vector containing the cumulative sum of all the numbers in xs.

defn cum -sum (xs:Seq <Int >) :

val ys = Vector <Int >()

var accum = 0

while not empty?(xs) :

accum = accum + next(xs)

add(ys , accum)

ys

Let’s try it out on some numbers.

CHAPTER 6. PROGRAMMING WITH SEQUENCES 100

defn main () :

val xs = [1, 1, 3, 1, 5, 6, 2, 3, 8]

println(cum -sum(to-seq(xs)))

main()

Compiling and running the above prints out

[1 2 5 6 11 17 19 22 30]

Seqable

Notice that in the call to cum-sum we have to explicitly convert our tuple into a Seq object using to-seq.
Otherwise Stanza would issue a type error. For convenience, however, it would be better to move the call
to to-seq inside the body of cum-sum and have cum-sum accept any object that supports to-seq.

This brings us to the type Seqable. Values of type Seqable support only a single operation: calling
to-seq on a Seqable object returns a Seq. Seqable also accepts a type parameter that indicates the type
of element it contains. Thus calling to-seq on a Seqable<Int> returns a Seq<Int>.

Let’s change our cum-sum function to accept an object of type Seqable<Int>.

defn cum -sum (xs:Seqable <Int >) :

val xs-seq = to -seq(xs)

val ys = Vector <Int >()

var accum = 0

while not empty?(xs-seq) :

accum = accum + next(xs -seq)

add(ys , accum)

ys

Now our cum-sum function is general enough to be called with any Seqable object. This includes ranges,
tuples, arrays, vectors, lists (which we will cover later), and even other sequences. Let’s try it out.

defn main () :

val xs = [1, 1, 3, 1, 5, 6, 2, 3, 8]

val ys = to -array <Int >([1, 1, 3, 1, 5, 6, 2, 3, 8])

val zs = to -vector <Int >([1, 1, 3, 1, 5, 6, 2, 3, 8])

val ws = to -list([1, 1, 3, 1, 5, 6, 2, 3, 8])

println(cum -sum(xs))

println(cum -sum(ys))

println(cum -sum(zs))

println(cum -sum(ws))

main()

which prints out

[1 2 5 6 11 17 19 22 30]

[1 2 5 6 11 17 19 22 30]

[1 2 5 6 11 17 19 22 30]

[1 2 5 6 11 17 19 22 30]

This is the mechanism that allows the core library functions (such as do) to operate on all sorts of
collections. do just accepts a Seqable argument.

And since do accepts a Seqable argument, we can actually rewrite our cum-sum function more elegantly
using do.

defn cum -sum (xs:Seqable <Int >) :

val ys = Vector <Int >()

var accum = 0

for x in xs do :

CHAPTER 6. PROGRAMMING WITH SEQUENCES 101

accum = accum + x

add(ys , accum)

ys

6.3 Lazy Sequences

Our cum-sum function takes a sequence as its argument and returns a vector. This works just fine if we
want all of the cumulative sums, but what if we want only the first four? Then we’re spending a lot of time
computing results that we don’t need.

To overcome this, we can rewrite cum-sum to return a Seq<Int> instead of a Vector<Int> where the
elements in the returned sequence is computed on-demand.

defn cum -sum (xs:Seqable <Int >) :

var accum = 0

val xs-seq = to -seq(xs)

new Seq <Int > :

defmethod empty? (this) :

empty?(xs -seq)

defmethod peek (this) :

accum + peek(xs-seq)

defmethod next (this) :

accum = peek(this)

next(xs -seq)

accum

Now cum-sum returns a lazy sequence where items are computed as they’re needed. To demonstrate this,
let’s call cum-sum on an infinite range of numbers, and print out the first 10 elements.

defn main () :

val xs = 1 to false by 3

val ys = cum -sum(xs)

for i in 0 to 10 do :

println ("Item %_ is %_." % [i, next(ys)])

main()

Compiling and running the above gives us

Item 0 is 1.

Item 1 is 5.

Item 2 is 12.

Item 3 is 22.

Item 4 is 35.

Item 5 is 51.

Item 6 is 70.

Item 7 is 92.

Item 8 is 117.

Item 9 is 145.

Thus ys is an infinite sequence of integers containing the cumulative sum of another infinite sequence of
integers.

seq

Creating a sequence by calling a function repeatedly on the items from another sequence is a common
operation, so it is included in Stanza’s core library as the seq operating function. The cum-sum function
can be rewritten using seq like this.

CHAPTER 6. PROGRAMMING WITH SEQUENCES 102

defn cum -sum (xs:Seqable <Int >) :

var accum = 0

for x in xs seq :

accum = accum + x

accum

6.4 Using The Sequence Library

Now that we’ve been introduced to sequences, we can unveil the full power of Stanza’s core library. As
mentioned in an earlier chapter, Stanza encourages users to architect their programs by defining a small set
of fundamental operations on each type, and then augment that with a large library of derived operations
for those types. Stanza’s sequence library is structured in such a way.

The set of fundamental operations for a Seq is very small, comprised of just empty?, peek, and next. But
Stanza includes a large library of useful functions for manipulating sequences. These functions are roughly
categorized into three groups: sequence creators, sequence operators, and sequence reducers. Independently
of this categorization, a large number of these functions are also operating functions and can be used with
the for construct.

Sequence Creators

Sequence creators are functions that take non-Seq arguments and create and return Seq objects. In typical
programming, most sequences you manipulate will have been created with a sequence creator.

to-seq

The most commonly used sequence creator is the to-seq function, which works on any Seqable object.
You’ve already seen usages of it for converting tuples, arrays, vectors, and ranges to sequences.

repeatedly

repeatedly takes an argument function, f, and creates an infinite sequence from the results of calling f

repeatedly. Here is an example of using it to create a sequence containing all the positive powers of 2.

var x = 1L

val xs = repeatedly $ fn () :

val cur -x = x

x = x * 2L

cur -x

Let’s print out the first 10 elements.

do(println{next(xs)}, 0 to 10)

which prints out

1

2

4

8

16

32

64

128

256

512

CHAPTER 6. PROGRAMMING WITH SEQUENCES 103

repeat-while

repeat-while takes an argument function, f, and creates an infinite sequence by calling f repeatedly. f
must return a Maybe object. The returned sequence contains all the wrapped objects in all the One objects
returned by f and ends the first time f returns a None object.

Here is an example of using it to create a sequence containing all the positive powers of 2 that are less than
2000.

var x = 1L

var xs = repeat -while $ fn () :

val cur -x = x

if cur -x < 2000L :

x = x * 2L

One(cur -x)

else :

None()

Let’s print out all the items in xs.

do(println , xs)

which prints out

1

2

4

8

16

32

64

128

256

512

1024

Sequence Operators

Sequence operators are functions that take Seq (or Seqable) arguments and create and return Seq objects.
The lazy cum-sum function that we implemented is an example of a sequence operator.

cat

One of the simplest sequence operators is the cat function which simply concatenates two sequences
together to form a longer sequence. Here is an example.

val xs = [" Patrick", "Luca", "Emmy"]

val ys = ["Sunny", "Whiskey", "Rummy"]

val zs = cat(xs , ys)

do(println , zs)

which prints out

Patrick

Luca

Emmy

Sunny

Whiskey

Rummy

CHAPTER 6. PROGRAMMING WITH SEQUENCES 104

join

join is another simple sequence operator that takes a sequence, xs, and a joiner item, x, and creates a lazy
sequence by inserting x in between each item in xs. Here is an example.

val xs = [" Patrick", "Luca", "Emmy"]

val zs = join(xs , "and")

do(println , zs)

which prints out

Patrick

and

Luca

and

Emmy

take-n

The take-n function takes an integer, n, and a sequence, xs, and returns a lazy sequence consisting of the
first n elements in xs. It is a fatal error to call take-n on a sequence with less than n items. Here is an
example of using take-n to print out the first 10 items in an infinite range.

val xs = 0 to false by 13

do(println , take -n(10, xs))

which prints out

0

13

26

39

52

65

78

91

104

117

filter

The filter function takes a predicate function, f, and a sequence, xs, and returns a lazy sequence
consisting only of the items in xs for which calling f on them returns true. filter is also an operating
function. Here is an example of using filter to print out only the positive items in a sequence.

val xs = [1, 3, -2, -7, 3, -8, 9, 10, -3]

val ys = filter ({_ > 0}, xs)

do(println , ys)

which prints out

1

3

3

9

10

CHAPTER 6. PROGRAMMING WITH SEQUENCES 105

seq

The seq function is the most commonly used sequence operator. It takes a function, f, and a sequence, xs,
and returns a lazy sequence comprised of the results of calling f on each item in the sequence. Here is an
example of printing out the length of each string in a sequence.

val xs = [" Patrick", "Luca", "Emmy", "Sunny", "Whiskey", "Rummy"]

val ys = seq(length , xs)

do(println , ys)

which prints out

7

4

4

5

7

5

Sequence Reducers

Sequence reducers are functions that take Seq (or Seqable) arguments and return non-Seq objects.

We have already been introduced to and have been using a number of these, such as do, find, first,
index-when, all?, none?, and any?. We’ll take this opportunity to say that they each accept any Seqable

object as their argument.

We’ll show you a handful more useful reducers here, but you are encouraged to read the reference
documentation for a listing of all of them.

contains?

contains? takes a sequence, xs, and an item, y, and returns true if xs contains y. Otherwise it returns
false.

val xs = [" Patrick", "Luca", "Emmy"]

println(contains ?(xs, "Emmy "))

println(contains ?(xs, "Emily "))

prints out

true

false

index-of

index-of takes a sequence, xs, and an item, y, and returns the index of the first occurrence of y in xs. If
y never appears in xs, then false is returned.

val xs = [" Patrick", "Luca", "Emmy"]

println(index -of(xs, "Emmy "))

println(index -of(xs, "Emily "))

prints out

2

false

CHAPTER 6. PROGRAMMING WITH SEQUENCES 106

unique

unique takes a sequence, xs, and returns a list containing all the items in xs but with duplicates removed.

val xs = [" Patrick", "Luca", "Luca", "Emmy", "Patrick", "Emmy"]

println(unique(xs))

prints out

(" Patrick" "Luca" "Emmy")

to-array

to-array creates a new array containing all the items in its given sequence. It takes a single type argument
to indicate the element type of the array. We will discuss type arguments when we introduce parametric
polymorphism. Here is an example.

val xs = [" Patrick", "Luca", "Emmy"]

println(to-array <String >(xs))

prints out

[" Patrick" "Luca" "Emmy"]

to-vector

to-vector creates a new vector containing all the items in its given sequence. Like to-array, it also takes
a single type argument to indicate the element type of the vector. Here is an example.

val xs = [" Patrick", "Luca", "Emmy"]

println(to-vector <String >(xs))

to-list

to-list creates a new list containing all the items in its given sequence. Note that unlike to-array and
to-vector, to-list does not take a type argument. We will cover lists in more detail when we talk about
programming with immutable datastructures. For now, you can treat them just as another type of
collection. And we will explain why to-list does not require a type argument in the chapter on
parametric polymorphism. Here is an example.

val xs = [" Patrick", "Luca", "Emmy"]

println(to-list(xs))

which prints out

(" Patrick" "Luca" "Emmy")

reduce

reduce takes a binary operator, f, an initial item, x0, and a sequence, xs. If xs is empty then reduce

returns x0. If xs contains one item, then reduce returns the result of calling f on x0 and the item in xs. If
xs contains two items, then reduce returns the result of calling f on x0 and the first item in xs, and then
calling f again on that result and the second item in xs. If xs contains three items, then reduce returns
the result of calling f on x0 and the first item in xs, then calling f again on that result and the second
item in xs, and then calling f again on that result and the third item in xs. Et cetera.

Here is an example of using the bit-or operator to compute the bitwise or of every integer in a tuple.

CHAPTER 6. PROGRAMMING WITH SEQUENCES 107

val xs = [1, 5, 18, 92, 1, 3]

val y = reduce(bit -or, 0, xs)

println(y)

which prints out

95

6.5 Collection versus Seqable

Consider the following definition of print-odd-then-even, a function that first prints all the odd integers
in a sequence, and then prints all the even integers in the sequence.

defn print -odd -then -even (xs:Seqable <Int >) :

val odd = filter ({_ % 2 != 0}, xs)

val even = filter ({_ % 2 == 0}, xs)

print("Odd integers: ")

println -all(join(odd , ", "))

print("Even integers: ")

println -all(join(even , ", "))

Because we declared print-odd-then-even to accept an argument of type Seqable, we are able to call it
on a variety of different types of collections. Let’s try a few.

defn main () :

val xs = [1, 2, 3, 4, 5, 6, 7, 8]

val ys = to -array <Int >([1, 2, 3, 4, 5, 6, 7, 8])

val zs = to -vector <Int >([1, 2, 3, 4, 5, 6, 7, 8])

val ws = 1 through 8

println ("On tuples ")

print -odd -then -even(xs)

println ("On arrays ")

print -odd -then -even(ys)

println ("On vectors ")

print -odd -then -even(zs)

println ("On ranges ")

print -odd -then -even(ws)

main()

It prints out

On tuples

Odd integers: 1, 3, 5, 7

Even integers: 2, 4, 6, 8

On arrays

Odd integers: 1, 3, 5, 7

Even integers: 2, 4, 6, 8

On vectors

Odd integers: 1, 3, 5, 7

Even integers: 2, 4, 6, 8

On ranges

Odd integers: 1, 3, 5, 7

Even integers: 2, 4, 6, 8

demonstrating that it does the same thing regardless of the type of collection.

But now let’s try calling it on a Seq. All Seq objects are also trivially instances of Seqable. Calling
to-seq on a Seq object simply returns itself.

CHAPTER 6. PROGRAMMING WITH SEQUENCES 108

defn main2 () :

val xs = to -seq(1 through 8)

println ("On seqs")

print -odd -then -even(xs)

main2()

This print outs

On seqs

Odd integers: 1, 3, 5, 7

Even integers:

What is happening? How come the even integers didn’t get printed out?

The problem lies in the two calls to filter.

val odd = filter ({_ % 2 != 0}, xs)

val even = filter ({_ % 2 == 0}, xs)

filter creates a lazy sequence, so iterating over the result of filter also requires iterating over the
sequence it was constructed from. Thus printing out odd also requires iterating over xs, in which case,
after printing out all the odd integers, we will have iterated through xs once completely and it will now be
empty. At this point, even is also empty, as the sequence it was constructed from is now empty.

The fundamental problem is that Seq is a subtype of Seqable. Calling to-seq twice on a Seq object does
not return two independent sequences. For these purposes, Stanza provides a subtype of Seqable called
Collection. Identical to Seqable, to-seq is the only fundamental operation supported by Collection.
The crucial difference is that Seq is not a subtype of Collection. This means that each call to to-seq on
a Collection returns an independent sequence.

Let’s rewrite our print-odd-then-even function with the appropriate type annotation.

defn print -odd -then -even (xs:Collection <Int >) :

val odd = filter ({_ % 2 != 0}, xs)

val even = filter ({_ % 2 == 0}, xs)

print("Odd integers: ")

println -all(join(odd , ", "))

print("Even integers: ")

println -all(join(even , ", "))

You may verify that calling print-odd-then-even with all the collections in main still behaves as before.
The important point is that attempting to compile main2 now gives this error.

Cannot call function print -odd -then -even of type Collection <Int > -> False

with arguments of type (Seq <Int >).

With the appropriate type annotation, Stanza now prevents us from calling print-odd-then-even

incorrectly.

As a rule of thumb, you should always write your functions to accept Collection objects by default. If
you are sure that you iterate through the sequence only once, then you may change it to accept Seqable
objects in order to be able to pass it a Seq.

6.6 Revisiting Stack

Let us now revisit our Stack type from chapter 4. Here is a (slightly cleaned up) listing of its definitions.

deftype Stack

defmulti push (s:Stack , x:String) -> False

defmulti pop (s:Stack) -> String

defmulti empty? (s:Stack) -> True|False

CHAPTER 6. PROGRAMMING WITH SEQUENCES 109

defn Stack (capacity:Int) -> Stack :

val items = Array <String >(capacity)

var size = 0

new Stack :

defmethod push (this , x:String) :

if size == capacity : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

print -all(o, join(take -n(size , items), " "))

print(o, "]")

It’s quite a basic definition, allowing us to push and pop items but not much else. We cannot find the
index of a specific item, or determine whether it contains any capitalized strings, or get a listing of all of its
unique elements. We cannot even iterate through it. The following

val s = Stack (10)

push(s, "Timon")

push(s, "and")

push(s, "Pumbaa ")

for x in s do :

println(x)

gives us this error if we try to compile it.

No appropriate function do for arguments

of type (? -> False , Stack). Possibilities are:

do: <?T> . (T -> ?, Seqable <?T>) -> False

do: <?T, ?S> . ((T, S) -> ?,

Seqable <?T>,

Seqable <?S>) -> False

do: <?T, ?S, ?U> . ((T, S, U) -> ?, Seqable <?T>,

Seqable <?S>,

Seqable <?U>) -> False

It says that there are multiple definitions of do but all of them require a Seqable argument, and Stack is
not a Seqable.

We shall extend the functionality of Stack by declaring it as a subtype of Collection.

deftype Stack <: Collection <String >

The mandatory minimal implementation of Collection is to-seq, so we need to now provide a method
for it. Here is now our extended Stack construction function.

defn Stack (capacity:Int) -> Stack :

val items = Array <String >(capacity)

var size = 0

new Stack :

defmethod push (this , x:String) :

if size == capacity : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

CHAPTER 6. PROGRAMMING WITH SEQUENCES 110

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

print -all(o, join(this , " "))

print(o, "]")

defmethod to-seq (this) :

take -n(size , items)

Our implementation of to-seq simply calls take-n to retrieve the first size elements from the backing
array items.

Now let’s try exercising the power of our new extended Stack type.

defn main () :

val s = Stack (10)

for x in ["Timon", "Timon", "and", "Pumbaa", "Pumbaa "] do :

push(s, x)

println ("1. Contents of s")

println(s)

println ("\n2. Index of Pumbaa ")

println(index -of(s, "Pumbaa "))

println ("\n3. Does it contain any capitalized strings ?")

println(any?(upper -case?{_[0]}, s))

println ("\n4. Are all strings capitalized ?")

println(all?(upper -case?{_[0]}, s))

println ("\n5. What are the capitalized strings ?")

val cap -s = filter(upper -case?{_[0]}, s)

println -all(join(cap -s, ", "))

println ("\n6. What are its unique elements ?")

println(unique(s))

main()

Compiling and running the above prints out

1. Contents of s

Stack containing [Timon Timon and Pumbaa Pumbaa]

2. Index of Pumbaa

3

3. Does it contain any capitalized strings?

true

4. Are all strings capitalized?

false

5. What are the capitalized strings?

Timon , Timon , Pumbaa , Pumbaa

6. What are its unique elements?

("Timon" "and" "Pumbaa ")

This example shows us the full advantage of structuring your programs to contain a large library of derived
operations. With a two line change to our definition of the Stack object, we’ve provided it the full
capabilities of Stanza’s sequence library.

Chapter 7

Programming with Immutable
Datastructures

An immutable datastructure is one that cannot be changed after it has been created. Some examples
you’ve already seen are strings, tuples, numbers, and true and false. In constrast, a mutable datastructure
is one that can be changed after it has been created. Some examples are arrays, vectors, and sequences.

If something is guaranteed not to change, then there are two details that you no longer have to worry about.

1. You don’t have to care about which object it is. There is no difference between the value 42 and the
value 20 + 22. They are the same value. You can replace every occurrence of 42 in your program
with 20 + 22 and it will still behave the same way. Similarly, you can replace every occurrence of

"Timon and Pumbaa"

in your program with

append ("Timon", " and Pumbaa ")

without changing its behaviour.

In contrast, consider the following call for adding a number to a vector.

add(xs , 42)

Now you do need to pay very close attention to which vector xs is referring to. It would be an error
to add 42 to the wrong vector.

2. You don’t have to think about when to do something to an object. Consider the following code for
popping an item from the vector xs and then adding two new items to it.

pop(xs)

add(xs , 42)

add(xs , 43)

The ordering of those expressions are critically important. Every possible ordering of those three
expressions results in a different behaviour. Notice that this sort of thinking is never done with
strings, tuples, or numbers; simply because there’s nothing than can be done to them except to create
new objects out of them.

111

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 112

7.1 Lists

A List object represents a singly linked list of objects. A list is Stanza’s most basic immutable
datastructure and cannot be changed once created. Here is how to create an empty list.

List()

Here is how to create a list containing a single item.

List (42)

Here is how to create a list containing two items.

List(42, "Timon")

This works for lists containing up to four items. For creating lists containing more than four items, you
may use the to-list function to convert sequences into lists.

to-list([1, 2, 3, 4, 5, "Timon", "and", "Pumbaa "])

You may also use cons (short for construct) to create a new list by tacking a new item to the beginning of
an existing list.

val xs = List(1, 2, 3)

val ys = cons(42, xs)

cons allows you to tack on up to three items.

val xs = List(1, 2, 3)

val ys0 = cons(42, xs)

val ys1 = cons(42, 43, xs)

val ys2 = cons(42, 43, 44, xs)

To append more than three items to the beginning of another list, use the append function.

val xs = List(1, 2, 3)

val ys = append ([42, 43, 44, 45, 46, 47], xs)

println(ys)

Compiling and running the above prints out

(42 43 44 45 46 47 1 2 3)

Fundamental Operations

A list is defined by three fundamental operations.

1. You can check whether the list is empty.

2. You can retrieve the first element in the list.

3. You can retrieve a list containing all the elements after the first one.

Assuming that xs is a list, here is how to check whether xs is empty.

empty?(xs)

Here is how to retrieve the first element in xs.

head(xs)

And here is how to retrieve all the elements after the first one, as another list.

tail(xs)

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 113

7.2 Example: Coin Counting

Suppose you have access to pennies, nickels, dimes, quarters, and loonies, and the poutine you bought costs
$1.17. (Loonies are Canadian coins worth 100 cents each.) How may different combinations of coins are
there that total up to $1.17?

Here is our algorithm for calculating it. num-coin-combos takes two arguments: cents, which represents
the amount of money you wish to make represented in cents, and coins, a list of the cent values of the
coins you can use.

defn num -coin -combos (cents:Int , coins:List <Int >) -> Int :

if cents == 0 :

1

else if cents < 0 :

0

else if empty?(coins) :

0

else :

val with -first -coin = num -coin -combos(cents - head(coins), coins)

val without -first -coin = num -coin -combos(cents , tail(coins))

with -first -coin + without -first -coin

Let’s read through each case of the algorithm one by one. The first case is

if cents == 0 :

1

There is only one way to make 0 cents, and that is to not use any coins at all. Makes sense. The second
case is

else if cents < 0 :

0

There is no way to make a negative cent value. Makes sense. The third case is

else if empty?(coins) :

0

If we’re not allowed to use any kind of coin, then there’s also no way to make our total. Makes sense as
well. The real work of the algorithm is done by the fourth case.

val with -first -coin = num -coin -combos(cents - head(coins), coins)

val without -first -coin = num -coin -combos(cents , tail(coins))

with -first -coin + without -first -coin

Consider the next type of coin in our list. Suppose it’s a loonie. There are two choices we can now make.

1. We can account for 100 cents by using the loonie, and count the number of ways to make cents -

100. This is calculated as with-first-coin.

2. We can choose not to use the loonie, and count the number of ways to make cents without using
loonies. This is calculated as without-first-coin.

The total number of combinations is the sum of the results of the two possible choices we can make.

Let’s now use our num-coin-combos function to answer the original question.

defn main () :

val coins = [100, 25, 10, 5, 1]

val num -combos = num -coin -combos (117, to-list(coins))

println (" There are %_ coin combinations that total to 117 cents." %

[num -combos])

main()

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 114

which prints out

There are 349 coin combinations that total to 117 cents.

Strange Lands

Suppose we find ourselves in strange lands with a strange currency. The currency is made up of buzzles,
with a value of 57 cents, moozles (26 cents), foogs (10 cents), goofs (5 cents), and tents (3 cents). Now how
many ways are there to make the $1.17 needed to buy poutine? (Though the currency may be strange,
poutine is fairly universal).

Let’s adapt our main function to calculate with the new currency.

defn main () :

val coins = [57, 26, 10, 5, 3]

val num -combos = num -coin -combos (117, to-list(coins))

println (" There are %_ coin combinations that total to 117 cents." %

[num -combos])

main()

which prints out

There are 137 coin combinations that total to 117 cents.

indicating that buzzles and foogs are a little less flexible than Canadian currency.

SICP

This exercise is adapted from the best book on computer science ever written, The Structure and
Interpretation of Computer Programs by Abelson and Sussman. I highly recommend it to anyone
interested in the deep connections between languages and computation. And since Stanza is a (highly
modified) Scheme dialect at heart, all the exercises can easily be done in Stanza as well.

7.3 List Library

List is a subtype of Collection and so all of Stanza’s sequence library also works on lists. The core
library also includes a few functions specifically for managing lists. You’ve been introduced to a few of
them already: head, tail, append, cons. Here’s a few more.

get

The get function allows you to retrieve the element at a specific index in a list.

val xs = to -list(0 to 1000 by 3)

get(xs , 11)

Using Stanza’s built-in operator, the above could also be written as

val xs = to -list(0 to 1000 by 3)

xs[11]

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 115

headn

headn returns a list containing the first n items in a list.

val xs = to -list(0 to 1000 by 3)

headn(xs, 10)

tailn

tailn returns a new list containing the items following the first n items in a list.

val xs = to -list(0 to 1000 by 3)

tailn(xs, 10)

reverse

reverse takes an argument list and returns a new list containing the same items in reversed order.

val xs = to -list(0 to 1000 by 3)

reverse(xs)

last

last takes an argument list and returns the last item in it. The list must not be empty.

val xs = to -list(0 to 1000 by 3)

last(xs)

but-last

but-last takes an argument list and returns a new list containing all the items from the argument list
except the last one.

val xs = to -list(0 to 1000 by 3)

but -last(xs)

map

map is the most commonly used function on lists. It takes an argument function, f, and a list, xs, and
returns a new list containing the results of calling f on each item.

Here is an example that calculates the lengths of all the strings in the list xs.

val xs = to -list ([" Timon" "and" "Pumbaa "])

val lengths = map(length , xs)

map is also an operating function, and it can be used together with the for construct. Here is an example of
doubling every integer in the list xs.

val xs = to -list(0 to 1000 by 3)

val doubled = for x in xs map :

x * 2

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 116

7.4 Example: More Coin Counting

One limitation of our previous algorithm for coin counting is that it calculated the number of ways we can
make a certain total, but it never told us what these combinations actually were. You may be (as I was)
actually quite curious about how to make $1.17 using buzzles and foogs.

Let’s write a function called coin-combos that does that. Like num-coin-combos, coin-combos takes two
arguments: cents, which represents the number of cents you wish to make, and coins, a list of the cent
values of the coins. The difference is that coin-combos returns a list of combinations. Each combination is
a list containing the number of times each coin is used.

defn coin -combos (cents:Int , coins:List <Int >) -> List <List <Int >> :

if cents == 0 :

List(map({0}, coins))

else if cents < 0 :

List()

else if empty?(coins) :

List()

else :

defn head+1 (xs:List <Int >) : cons(head(xs) + 1, tail(xs))

defn cons -0 (xs:List <Int >) : cons(0, xs)

val with -first -coin = map(head+1, coin -combos(cents - head(coins), coins))

val without -first -coin = map(cons -0, coin -combos(cents , tail(coins)))

append(with -first -coin , without -first -coin)

Let’s examine each case separately.

if cents == 0 :

List(map({0}, coins))

There is only one way to make up 0 cents, and that is by using no coins at all. So return a list with a single
combination indicating that each coin is used 0 times.

else if cents < 0 :

List()

There is no way to make a negative total so return an empty list.

else if empty?(coins) :

List()

If we’re not allowed to use any kind of coin, then there’s also no way to make our total. Return an empty
list. And finally, we’re at the last case again.

val with -first -coin = map(head+1, coin -combos(cents - head(coins), coins))

val without -first -coin = map(cons -0, coin -combos(cents , tail(coins)))

append(with -first -coin , without -first -coin)

All the combinations resulting from choosing to use the first coin are computed in with-first-coin. And
all the combinations resulting from choosing not to use the first coin are computed in
without-first-coin. We then append both lists to get the complete list of combinations.

The fourth case relies upon two helper functions, head+1, which adds 1 to the head of a list, and cons-0,
which tacks 0 on to the beginning of a list.

defn head+1 (xs:List <Int >) : cons(head(xs) + 1, tail(xs))

defn cons -0 (xs:List <Int >) : cons(0, xs)

Let’s now update our main function to report all the different ways we can use buzzles and foogs to make
$1.17. Recall that buzzles are worth 57 cents, moozles are 26 cents, foogs are 10 cents, goofs are 5 cents,
and tents are 3 cents.

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 117

defn main () :

val coins = [57, 26, 10, 5, 3]

val combos = coin -combos (117, to -list(coins))

println (" There are %_ coin combinations that total to 117 cents." % [

length(combos)])

do(println , combos)

main()

Compiling and running the above prints out

There are 137 coin combinations that total to 117 cents.

(2 0 0 0 1)

(1 2 0 1 1)

(1 1 2 1 3)

(1 1 1 3 3)

...

(0 0 0 6 29)

(0 0 0 3 34)

(0 0 0 0 39)

Thus we can pay for our $1.17 poutine using two buzzles and a foog. Or if we don’t mind holding up the
line, we can hunt around for thirty nine tents.

Readable Combos

For the sake of readability, let’s write a printing function for formatting the combinations in a readable
way. print-combo takes as arguments a combination, combo, and a collection representing the names of
the coins, names.

defn print -combo (combo:List <Int >, names:Collection <String >) :

val parts = for (c in combo , n in names) seq? :

if c == 0 : None()

else if c == 1 : One ("%_ %_" % [c, n])

else : One("%_ %_s" % [c, n])

println -all(join(parts , ", "))

You are encouraged to read the reference documentation for a description of what seq? does. You should
be able to understand it now.

Now update the final call to print in the main function.

val coin -names = [" buzzle", "moozle", "foog", "goof", "tent"]

do(print -combo{_, coin -names}, combos)

Compiling and running the program now prints out

There are 137 coin combinations that total to 117 cents.

2 buzzles , 1 tent

1 buzzle , 2 moozles , 1 goof , 1 tent

1 buzzle , 1 moozle , 2 foogs , 1 goof , 3 tents

1 buzzle , 1 moozle , 1 foog , 3 goofs , 3 tents

...

15 goofs , 14 tents

12 goofs , 19 tents

9 goofs , 24 tents

6 goofs , 29 tents

3 goofs , 34 tents

39 tents

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 118

7.5 Extended Example: Automatic Differentiation

In your own programming, you are encouraged to define and use immutable datastructures when possible.
Uses of mutation and stateful objects should serve a clear purpose. In this example, we define an
immutable datastructure for manipulating algebra expressions and write a function for automatically
differentiating expressions.

Symbols

Symbol objects are used to represent a unique constant object in Stanza. For example, the following
creates and assigns symbols to x and to y.

val x = ‘Timon

val y = ‘Pumbaa

Symbols are created by prefixing an identifier with the backtick (‘) operator. Very little can be done with
symbols except check whether it is equal to another symbol. The following

println(x == ‘Timon)

println(y == ‘Timon)

prints out

true

false

and represents the most common use case for symbols. In this respect they are used in much the same way
as enumerated constants in other languages. We will use symbols to represent the name of variables in our
algebraic expressions.

The Expression Datastructure

We will first declare a type, Exp, to refer to an algebraic expression.

deftype Exp

defstruct Const <: Exp : (value:Int)

defstruct Variable <: Exp : (name:Symbol)

defstruct Add <: Exp : (a:Exp , b:Exp)

defstruct Subtract <: Exp : (a:Exp , b:Exp)

defstruct Multiply <: Exp : (a:Exp , b:Exp)

defstruct Divide <: Exp : (a:Exp , b:Exp)

defstruct Power <: Exp : (a:Exp , b:Exp)

defstruct Log <: Exp : (a:Exp)

A handful of different types of expressions are supported. Const represents constant integer literals,
Variable represents a named variable, and the standard arithmetic operators are represented by Add,
Subtract, Multiply, and Divide. Power represents one expression raised to the power of another, and Log

represents the natural logarithm of an expression. Notice that many of the expressions contain fields that
are themselves types of Exp. So the type Exp contains fields of type Exp. We call such a type a recursive
type.

Printing an Expression

As usual, we will provide a custom print method for the Exp type to allow us to print it out.

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 119

defmethod print (o:OutputStream , e:Exp) :

defn print -operator (a:Exp , op:String , b:Exp) :

print(o, a)

print(o, op)

print(o, b)

match(e) :

(e:Const) : print(o, value(e))

(e:Variable) : print(o, name(e))

(e:Log) : print(o, "ln(%_)" % [a(e)])

(e:Add) : print -operator(a(e), " + ", b(e))

(e:Subtract) : print -operator(a(e), " - ", b(e))

(e:Multiply) : print -operator(a(e), " * ", b(e))

(e:Divide) : print -operator(a(e), " / ", b(e))

(e:Power) : print -operator(a(e), " ^ ", b(e))

Let’s now create an expression and print it out. The expression we will create is

2 * x ^ 2 + (1 + 3) * x + ln(x + 4)

Here is our main function.

defn main () :

val term1 = Multiply(Const (2), Power(Variable(‘x), Const (2)))

val term2 = Multiply(Add(Const (1), Const (3)), Variable(‘x))

val term3 = Log(Add(Variable(‘x), Const (4)))

val exp = Add(Add(term1 , term2), term3)

println(exp)

main()

Compiling and running the above prints out

2 * x ^ 2 + 1 + 3 * x + ln(x + 4)

We’re off to a great start!

Handling Precedence

Our printing method for expressions is close, but it doesn’t handle precedences correctly. The 1 + 3 in the
printed expression should be surrounded by parentheses. Otherwise the meaning is different than intended.

Let’s add a mechanism to handle precedences properly. Here’s the basic algorithm. Every type of
expression is associated with a number that represents its precedence. Const, Log, and Variable

expressions have the highest precedence 3. Power has precedence 2. Multiply and Divide have precedence
1. And Add and Subtract have the lowest precedence 0.

defn precedence (e:Exp) :

match(e) :

(e:Add|Subtract) : 0

(e:Multiply|Divide|Power) : 1

(e:Power) : 2

(e:Const|Variable|Log) : 3

The basic rule is that if a lower precedence expression appears as a child of a higher precedence expression,
then the lower precedence expression needs to be surrounded by parentheses when printed out. So we’ll
define a new nested function within print to help us print nested expressions in the context of expression e.

defn print -nested (ne:Exp) :

if precedence(ne) < precedence(e) :

print(o, "(%_)" % [ne])

else :

print(o, ne)

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 120

If the nested expression ne has lower precedence than e, then ne is printed with surrounding parentheses.
Otherwise ne is just printed directly.

The print-operator function also needs to be updated to call print-nested.

defn print -operator (a:Exp , op:String , b:Exp) :

print -nested(a)

print(o, op)

print -nested(b)

Those are all the changes needed to handle precedence. Here is the full print method.

defmethod print (o:OutputStream , e:Exp) :

defn print -nested (ne:Exp) :

if precedence(ne) < precedence(e) :

print(o, "(%_)" % [ne])

else :

print(o, ne)

defn print -operator (a:Exp , op:String , b:Exp) :

print -nested(a)

print(o, op)

print -nested(b)

match(e) :

(e:Const) : print(o, value(e))

(e:Variable) : print(o, name(e))

(e:Log) : print(o, "ln(%_)" % [a(e)])

(e:Add) : print -operator(a(e), " + ", b(e))

(e:Subtract) : print -operator(a(e), " - ", b(e))

(e:Multiply) : print -operator(a(e), " * ", b(e))

(e:Divide) : print -operator(a(e), " / ", b(e))

(e:Power) : print -operator(a(e), " ^ ", b(e))

If you compile and run the program again, it should now correctly print out

2 * x ^ 2 + (1 + 3) * x + ln(x + 4)

Operator Overloading

The code we used to construct the expression

val term1 = Multiply(Const (2), Power(Variable(‘x), Const (2)))

val term2 = Multiply(Add(Const(1), Const (3)), Variable(‘x))

val term3 = Log(Add(Variable(‘x), Const (4)))

val exp = Add(Add(term1 , term2), term3)

is quite verbose. Let’s overload some operators to help us with that.

Recall that the operators +, -, *, /, and ^ are just syntactic shorthands for calling the functions plus,
minus, times, divide, and bit-xor. Thus all we need to do is define those functions on Exp objects.

defn plus (a:Exp , b:Exp) : Add(a, b)

defn minus (a:Exp , b:Exp) : Subtract(a, b)

defn times (a:Exp , b:Exp) : Multiply(a, b)

defn divide (a:Exp , b:Exp) : Divide(a, b)

defn bit -xor (a:Exp , b:Exp) : Power(a, b)

defn ln (a:Exp) : Log(a)

Now let’s rewrite our main function using the new operators.

defn main () :

val x = Variable(‘x)

val [c1, c2, c3 , c4] = [Const(1), Const (2), Const(3), Const (4)]

val exp = c2 * x ^ c2 + (c1 + c3) * x + ln(x + c4)

println(exp)

Much better! If we overlook the little c’s in front of each constant it’s essentially identical to our printed
expression.

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 121

The Differentiation Algorithm

Now we can implement the differentiation algorithm! The function differentiate takes two arguments:
the expression to differentiate, e, and the variable with respect to which it will differentiate, x.

The actual formulas used to do the differentiation are standard, and we won’t explain how to derive them.
If you have taken a course on calculus, you can break open your old textbook and copy the formulas here.
If you haven’t taken a course on calculus, then armed with this program, you’ll never have to manually
differentiate again.

defn differentiate (e:Exp , x:Symbol) -> Exp :

defn ddx (e:Exp) : differentiate(e, x)

match(e) :

(e:Const) :

Const (0)

(e:Variable) :

if name(e) == x : Const (1)

else : Const (0)

(e:Add) :

ddx(a(e)) + ddx(b(e))

(e:Subtract) :

ddx(a(e)) - ddx(b(e))

(e:Multiply) :

a(e) * ddx(b(e)) + b(e) * ddx(a(e))

(e:Divide) :

val num = b(e) * ddx(a(e)) - a(e) * ddx(b(e))

val den = b(e) ^ Const (2)

num / den

(e:Power) :

e * (b(e) * ddx(a(e)) / a(e) + ln(a(e)) * ddx(b(e)))

(e:Log) :

ddx(a(e)) / a(e)

Let’s try differentiating our example expression now.

defn main () :

val x = Variable(‘x)

val [c1, c2, c3 , c4] = [Const(1), Const (2), Const(3), Const (4)]

val exp = c2 * x ^ c2 + (c1 + c3) * x + ln(x + c4)

val dexp = differentiate(exp , ‘x)

println (" Original Expression: %_" % [exp])

println (" Differentiated Expression: %_" % [dexp])

Compiling and running the program prints out

Original Expression: 2 * x ^ 2 + (1 + 3) * x + ln(x + 4)

Differentiated Expression: 2 * x ^ 2 * (2 * 1 / x + ln(x) * 0) +

x ^ 2 * 0 + (1 + 3) * 1 +

x * (0 + 0) + (1 + 0) / (x + 4)

If you check the result, it does work! The only problem is that the result contains a lot of expressions that
can be trivially simplified. We’ll fix that later. But this isn’t bad at all for a 22-line algorithm.

Simplification

The only thing left to do now is simplify the resulting expression. We will write a very simple simplifier
that simply looks for patterns like adding an expression to zero, or dividing by one, et cetera. But before
we introduce the simplification algorithm, we need to first write a very useful helper function.

defn map (f: Exp -> Exp , e:Exp) -> Exp :

match(e) :

(e:Add) : Add(f(a(e)), f(b(e)))

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 122

(e:Subtract) : Subtract(f(a(e)), f(b(e)))

(e:Multiply) : Multiply(f(a(e)), f(b(e)))

(e:Divide) : Divide(f(a(e)), f(b(e)))

(e:Power) : Power(f(a(e)), f(b(e)))

(e:Log) : Log(f(a(e)))

(e) : e

map takes an argument function, f, and an expression, e, and returns a new expression resulting from
calling f on every subexpression in e. Its behaviour is analogous to the map function for lists. Calling map

on a list maps f onto every element in the list. Similarly, calling map on an expression maps f onto every
subexpression in the expression.

We’re now ready to write the simplify function. It takes an expression as its argument, and returns a
simplified version of the expression by replacing specific patterns with simpler expressions.

defn simplify (e:Exp) :

defn const? (e:Exp , v:Int) :

match(e) :

(e:Const) : value(e) == v

(e) : false

defn one? (e:Exp) : const?(e, 1)

defn zero? (e:Exp) : const ?(e, 0)

match(map(simplify , e)) :

(e:Add) :

if zero?(a(e)) : b(e)

else if zero?(b(e)) : a(e)

else : e

(e:Subtract) :

if zero?(a(e)) : Const (-1) * b(e)

else if zero?(b(e)) : a(e)

else : e

(e:Multiply) :

if one?(a(e)) : b(e)

else if one?(b(e)) : a(e)

else if zero?(a(e)) or zero?(b(e)) : Const (0)

else : e

(e:Divide) :

if zero?(a(e)) : Const (0)

else if one?(b(e)) : a(e)

else : e

(e:Power) :

if one?(a(e)) : Const (1)

else if zero?(b(e)) : Const (1)

else : e

(e:Log) :

if one?(a(e)) : Const (0)

else : e

(e) : e

Most of the work of the simplifier is done in the branches of the match expression; you can read through
them to understand which patterns are being simplified and what they’re being simplified to. However, the
most magical part of the function is the call to map.

match(map(simplify , e)) :

(e:Add) :

...

In English, that pattern says: first simplify all the nested subexpressions in e and then look for these
patterns and replace them with simpler ones.

Let’s update our main function now to simplify the differentiated expression.

defn main () :

val x = Variable(‘x)

val [c1, c2, c3 , c4] = [Const(1), Const (2), Const(3), Const (4)]

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 123

val exp = c2 * x ^ c2 + (c1 + c3) * x + ln(x + c4)

val dexp = differentiate(exp , ‘x)

val sexp = simplify(dexp)

println (" Original Expression: %_" % [exp])

println (" Differentiated Expression: %_" % [dexp])

println (" Simplified Expression: %_" % [sexp])

When compiled and ran it prints out

Original Expression: 2 * x ^ 2 + (1 + 3) * x + ln(x + 4)

Differentiated Expression: 2 * x ^ 2 * (2 * 1 / x + ln(x) * 0) +

x ^ 2 * 0 + (1 + 3) * 1 +

x * (0 + 0) + (1 + 0) / (x + 4)

Simplified Expression: 2 * x ^ 2 * 2 / x + 1 + 3 + 1 / (x + 4)

The simplified expression is much cleaner now! This concludes our automatic differentiation example. The
simplicity of both the differentiation and the simplification algorithm stems from the fact that Exp is an
immutable datastructure. In fact, the programming language Lisp, which strongly emphasized
computation with immutable list structures and also heavily influenced the design of Stanza, was invented
in part for writing computer algebra systems. John McCarthy started writing differentiation algorithms in
Lisp even before the language was running!

Program Listing

Here’s a full program listing of the example.

defpackage calculus :

import core

;Expression definition

deftype Exp

defstruct Const <: Exp : (value:Int)

defstruct Variable <: Exp : (name:Symbol)

defstruct Add <: Exp : (a:Exp , b:Exp)

defstruct Subtract <: Exp : (a:Exp , b:Exp)

defstruct Multiply <: Exp : (a:Exp , b:Exp)

defstruct Divide <: Exp : (a:Exp , b:Exp)

defstruct Power <: Exp : (a:Exp , b:Exp)

defstruct Log <: Exp : (a:Exp)

;Precedences

defn precedence (e:Exp) :

match(e) :

(e:Add|Subtract) : 0

(e:Multiply|Divide|Power) : 1

(e:Power) : 2

(e:Const|Variable|Log) : 3

;Print behaviour for expressions

defmethod print (o:OutputStream , e:Exp) :

defn print -nested (ne:Exp) :

if precedence(ne) < precedence(e) :

print(o, "(%_)" % [ne])

else :

print(o, ne)

defn print -operator (a:Exp , op:String , b:Exp) :

print -nested(a)

print(o, op)

print -nested(b)

match(e) :

(e:Const) : print(o, value(e))

(e:Variable) : print(o, name(e))

(e:Log) : print(o, "ln(%_)" % [a(e)])

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 124

(e:Add) : print -operator(a(e), " + ", b(e))

(e:Subtract) : print -operator(a(e), " - ", b(e))

(e:Multiply) : print -operator(a(e), " * ", b(e))

(e:Divide) : print -operator(a(e), " / ", b(e))

(e:Power) : print -operator(a(e), " ^ ", b(e))

;Overloaded operators

defn plus (a:Exp , b:Exp) : Add(a, b)

defn minus (a:Exp , b:Exp) : Subtract(a, b)

defn times (a:Exp , b:Exp) : Multiply(a, b)

defn divide (a:Exp , b:Exp) : Divide(a, b)

defn bit -xor (a:Exp , b:Exp) : Power(a, b)

defn ln (a:Exp) : Log(a)

;Differentiation algorithm

defn differentiate (e:Exp , x:Symbol) -> Exp :

defn ddx (e:Exp) : differentiate(e, x)

match(e) :

(e:Const) :

Const (0)

(e:Variable) :

if name(e) == x : Const (1)

else : Const (0)

(e:Add) :

ddx(a(e)) + ddx(b(e))

(e:Subtract) :

ddx(a(e)) - ddx(b(e))

(e:Multiply) :

a(e) * ddx(b(e)) + b(e) * ddx(a(e))

(e:Divide) :

val num = b(e) * ddx(a(e)) - a(e) * ddx(b(e))

val den = b(e) ^ Const (2)

num / den

(e:Power) :

e * (b(e) * ddx(a(e)) / a(e) + ln(a(e)) * ddx(b(e)))

(e:Log) :

ddx(a(e)) / a(e)

;Map helper

defn map (f: Exp -> Exp , e:Exp) -> Exp :

match(e) :

(e:Add) : Add(f(a(e)), f(b(e)))

(e:Subtract) : Subtract(f(a(e)), f(b(e)))

(e:Multiply) : Multiply(f(a(e)), f(b(e)))

(e:Divide) : Divide(f(a(e)), f(b(e)))

(e:Power) : Power(f(a(e)), f(b(e)))

(e:Log) : Log(f(a(e)))

(e) : e

;Simplification algorithm

defn simplify (e:Exp) :

defn const? (e:Exp , v:Int) :

match(e) :

(e:Const) : value(e) == v

(e) : false

defn one? (e:Exp) : const?(e, 1)

defn zero? (e:Exp) : const ?(e, 0)

match(map(simplify , e)) :

(e:Add) :

if zero?(a(e)) : b(e)

else if zero?(b(e)) : a(e)

else : e

(e:Subtract) :

if zero?(a(e)) : Const (-1) * b(e)

else if zero?(b(e)) : a(e)

else : e

CHAPTER 7. PROGRAMMING WITH IMMUTABLE DATASTRUCTURES 125

(e:Multiply) :

if one?(a(e)) : b(e)

else if one?(b(e)) : a(e)

else if zero?(a(e)) or zero?(b(e)) : Const (0)

else : e

(e:Divide) :

if zero?(a(e)) : Const (0)

else if one?(b(e)) : a(e)

else : e

(e:Power) :

if one?(a(e)) : Const (1)

else if zero?(b(e)) : Const (1)

else : e

(e:Log) :

if one?(a(e)) : Const (0)

else : e

(e) : e

;Main program

defn main () :

val x = Variable(‘x)

val [c1, c2, c3 , c4] = [Const(1), Const (2), Const(3), Const (4)]

val exp = c2 * x ^ c2 + (c1 + c3) * x + ln(x + c4)

val dexp = differentiate(exp , ‘x)

val sexp = simplify(dexp)

println (" Original Expression: %_" % [exp])

println (" Differentiated Expression: %_" % [dexp])

println (" Simplified Expression: %_" % [sexp])

;Start!

main()

Exercises

1. Our differentiation algorithm is general enough to always give the right answer (for the types of
expressions it supports), but it’s often too general. This is most obvious in the differentiation rule for
Power expressions. The current rule handles the case where both the base and exponent are functions
of x, but typically only one of the two is a function of x and the other is a constant expression. Look
for these special cases and handle them more intelligently.

2. Extend the simplifier to be able to simplify 1 + 3 to 4.

3. Extend the simplifier to be able to simplify 1 + x + 3 to 4 + x.

4. Extend the simplifier to be able to simplify x - x to 0.

5. Extend the simplifier to be able to simplify x + 1 - x to 1.

6. Extend the simplifier to be able to simplify x * x to x 2̂.

7. Extend the simplifier to be able to simplify x / x to 1.

8. Extend the simplifier to be able to simplify x 2̂ / x to x.

9. Extend the simplifier to be able to simplify (x + 1) 2̂ / (x + 1) to x + 1.

Chapter 8

Parametric Polymorphism

This chapter will introduce you to the concept of parametric polymorphism and show you how to
parameterize your functions using type arguments, and your types using type parameters.

8.1 The Need for Polymorphism

Thus far, none of the functions you have written so far have been parameterized by type. Here is an
example implementation of a function that reverses a list of integers.

defn reverse -list (xs:List <Int >) -> List <Int > :

if empty?(xs) :

xs

else :

append(

reverse -list(tail(xs))

List(head(xs)))

But notice that it only works on integers. Thus the following does not compile.

reverse -list(List("Timon", "and", "Pumbaa "))

It gives this error.

Cannot call function reverse -list of type List <Int > -> List <Int >

with arguments of type (FullList <String >).

To handle this, we can write an overloaded version of reverse-list that accepts a list of strings.

defn reverse -list (xs:List <String >) -> List <String > :

if empty?(xs) :

xs

else :

append(

reverse -list(tail(xs))

List(head(xs)))

Now reverse-list will work on both integers and strings. So the following

println(reverse -list(List(1, 2, 3)))

println(reverse -list(List("Timon", "and", "Pumbaa ")))

compiles and prints out

(3 2 1)

(" Pumbaa" "and" "Timon")

126

CHAPTER 8. PARAMETRIC POLYMORPHISM 127

However, the code for the string version of reverse-list is identical to the integer version, save for its
type signature. This is an obvious duplication of effort. Also, this is clearly a subpar solution. What if we
next want to reverse a list of characters? It is not practical to define an overloaded version of
reverse-list for every type of list we wish to reverse.

The Limitations of the ? Type

What we need is the ability to call reverse-list on lists of any type. Well, we’ve already learned about
one mechanism that will allow us to do this: the ? type. So let’s replace our two overloaded reverse-list

functions with a single one that accepts a List<?> as its argument.

defn reverse -list (xs:List) -> List :

if empty?(xs) :

xs

else :

append(

reverse -list(tail(xs))

List(head(xs)))

Recall that the default type parameter is ? for a type without explicit type parameters. Thus List is
equivalent to List<?>. The above definition of reverse-list will allow us to call both lists of integers and
strings. Try out the following code again

println(reverse -list(List(1, 2, 3)))

println(reverse -list(List("Timon", "and", "Pumbaa ")))

and verify that it still prints out

(3 2 1)

(" Pumbaa" "and" "Timon")

It seems to work fine now on these cases. What is the problem?

The problem is in the type of the result of the reverse-list function. reverse-list is annotated to
return a List<?>. Thus the following obviously incorrect code will still compile.

val xs = reverse -list(List(" Timon", "and", "Pumbaa "))

println(head(xs) + 1)

When the compiled program is ran, it crashes with this error.

FATAL ERROR: Cannot cast value to type.

at core/core.stanza :2619.12

at test.stanza :15.8

This is disappointing. The reverse of a list of strings is obviously still a list of strings. So head(xs) should
be a String, and Stanza should have stopped us from trying to add an integer to it. More precisely, what
we need is the ability for reverse-list to accept lists of any type, but have it also return lists of the same
type.

In place of reverse-list, we’ll instead call the reverse function included in Stanza’s core library, and see
that it does not suffer from these problems.

val xs = reverse(List(" Timon", "and", "Pumbaa "))

println(head(xs) + 1)

Attempting to compile the above gives this error.

No appropriate function plus for arguments of type (String , Int).

Possibilities are:

plus: (Byte , Byte) -> Byte at core/core.stanza :2488.21

plus: (Int , Int) -> Int at core/core.stanza :2619.12

plus: (Long , Long) -> Long at core/core.stanza :2688.21

CHAPTER 8. PARAMETRIC POLYMORPHISM 128

plus: (Float , Float) -> Float at core/core.stanza :2742.21

plus: (Double , Double) -> Double at core/core.stanza :2792.21

which is much more reassuring. We’ll now see how we can write such functions ourselves.

8.2 Explicit Type Arguments

Here is how to write a polymorphic reverse-list function that takes an explicit type argument.

defn reverse -list <ElementType > (xs:List <ElementType >) -> List <ElementType > :

if empty?(xs) :

xs

else :

append(

reverse -list <ElementType >(tail(xs))

List(head(xs)))

reverse-list takes a single type argument called ElementType that represents the type of the elements
inside the xs list. Now we need to provide a type argument to reverse-list when we call it.

reverse -list <Int >(List(1, 2, 3))

What that does is instantiate a version of reverse-list by replacing ElementType with Int in its type
signature. Thus the instantiated function has type

List <Int > -> List <Int >

and we then call it with List(1, 2, 3). Let’s use our polymorphic function to reverse lists of integers and
strings.

val xs = reverse -list <Int >(List(1, 2, 3))

val ys = reverse -list <String >(List("Timon", "and", "Pumbaa "))

println(xs)

println(ys)

Compiling and running the above prints out the same message as before.

(3 2 1)

(" Pumbaa" "and" "Timon")

Let’s also verify that the return type of reverse-list is of the proper type.

val xs = reverse -list <String >(List("Timon", "and", "Pumbaa "))

println(head(xs) + 1)

Attempting to compile the above gives this error.

No appropriate function plus for arguments of type (String , Int).

Possibilities are:

plus: (Byte , Byte) -> Byte at core/core.stanza :2488.21

plus: (Int , Int) -> Int at core/core.stanza :2619.12

plus: (Long , Long) -> Long at core/core.stanza :2688.21

plus: (Float , Float) -> Float at core/core.stanza :2742.21

plus: (Double , Double) -> Double at core/core.stanza :2792.21

So the return type is correct, and Stanza properly catches our mistakes.

Note that we are responsible for instantiating a correct version of reverse-list to call. If we pass in the
wrong type arguments,

reverse -list <String >(List(1, 2, 3))

then the program will fail to compile. The above gives this error when we attempt to compile it.

CHAPTER 8. PARAMETRIC POLYMORPHISM 129

Cannot call function reverse -list of type List <String > -> List <String >

with arguments of type (FullList <Int >).

As a comment on programming style, the purpose of each type argument in a polymorphic function is
typically quite obvious. Thus programmers do not feel the need to give them descriptive names. Here is
how reverse-list would commonly be written.

defn reverse -list <T> (xs:List <T>) -> List <T> :

if empty?(xs) :

xs

else :

append(

reverse -list <T>(tail(xs))

List(head(xs)))

The vast majority of type arguments are simply named T (short for Type), or S (because it’s a letter close
to T).

8.3 Captured Type Arguments

Our polymorphic reverse-list function can now reverse lists of any type and also correctly returns a list
of the same type. It’s just a little cumbersome to use because we have to pass in the element type of the
list we’re reversing each time. This is because T is declared as an explicit type argument. We’ll see now
how to have Stanza automatically infer the type argument by declaring it as a captured type argument.
Here is a polymorphic reverse-list written using a captured type argument.

defn reverse -list <?T> (xs:List <?T>) -> List <T> :

if empty?(xs) :

xs

else :

append(

reverse -list(tail(xs))

List(head(xs)))

A captured type argument is declared with a ? prefix, which indicates that it is not passed in explicitly.
Instead, it is captured from the types of the arguments it is called with. The type signature above says that
reverse-list requires a list to be passed in for xs. Capture T from the element type of xs.

Now we can call reverse-list without passing in an explicit type argument.

reverse -list(List(1, 2, 3))

The argument List(1, 2, 3) has type List<Int>, and thus the type argument T captures the element
type Int.

In the following call,

reverse -list(List("Timon", "and", "Pumbaa "))

the argument List("Timon", "and", "Pumbaa") has a type List<String>, and thus the type argument T
captures the element type String.

Let’s try our example of reversing both integer lists and string lists again.

val xs = reverse -list(List(1, 2, 3))

val ys = reverse -list(List(" Timon", "and", "Pumbaa "))

println(xs)

println(ys)

Notice that we no longer need to pass in type arguments. Compiling and running the above prints out

CHAPTER 8. PARAMETRIC POLYMORPHISM 130

(3 2 1)

(" Pumbaa" "and" "Timon")

We can also verify that the return type is correct.

val xs = reverse -list(List(" Timon", "and", "Pumbaa "))

println(head(xs) + 1)

Attempting to compile the above gives this error.

No appropriate function plus for arguments of type (String , Int).

Possibilities are:

plus: (Byte , Byte) -> Byte at core/core.stanza :2488.21

plus: (Int , Int) -> Int at core/core.stanza :2619.12

plus: (Long , Long) -> Long at core/core.stanza :2688.21

plus: (Float , Float) -> Float at core/core.stanza :2742.21

plus: (Double , Double) -> Double at core/core.stanza :2792.21

Thus the reverse-list function is now polymorphic and it does not require any explicit type arguments.
We’ve finished generalizing reverse-list at this point, and it actually now has the same type signature as
the reverse function in the core library.

Capture Locations

Here’s another example polymorphic function.

defn store -in-odd -slots <?T> (xs:Array <?T>, v:T) -> False :

for i in 1 to length(xs) by 2 do :

xs[i] = v

store-in-odd-slots is a polymorphic function that accepts an array, xs, and an item, v, and stores v at
every odd index in xs. Let’s try it out.

val xs = to -array <String >([" Patrick", "Sunny", "Luca", "Whiskey", "Emmy", "Rummy "])

store -in-odd -slots(xs , "and")

println(xs)

prints out

[" Patrick" "and" "Luca" "and" "Emmy" "and"]

Let’s now take a closer look at the type signature of store-in-odd-slots.

defn store -in-odd -slots <?T> (xs:Array <?T>, v:T) -> False

The ?T following the function name

store -in-odd -slots <?T>

means that the function is polymorphic and accepts a single captured type argument. The argument list

(xs:Array <?T>, v:T)

contains two references to T, but only one of them is prefixed with a ?. This means that T is captured only
from the element type of xs.

The capture location for T was chosen carefully. Consider the following type definitions.

deftype Shape

deftype Circle <: Shape

where all circles are also shapes, but not all shapes are circles.

The following usage of store-in-odd-slots

CHAPTER 8. PARAMETRIC POLYMORPHISM 131

val shapes = Array <Shape >(10)

store -in-odd -slots(shapes , new Circle)

compiles correctly. T is captured from the element type of Array<Shape>, and is thus Shape. The
instantiated store-in-odd-slots therefore has type

(Array <Shape >, Shape) -> False

and can be suitably called with shapes and new Circle.

But this next usage

val circles = Array <Circle >(10)

store -in-odd -slots(circles , new Shape)

fails with this error

Cannot call function store -in-odd -slots of type (Array <Circle >, Circle) -> False

with arguments of type (Array <Circle >, Shape).

This is consistent with our intuition. You cannot store an arbitrary shape into an array that can only hold
circles. As an exercise, think about what would happen if store-in-odd-slots was instead declared the
following way.

defn store -in-odd -slots <?T> (xs:Array <T>, v:?T) -> False

As a general rule of thumb, the majority of polymorphic functions operate on a collection of some sort.
The type argument is almost always captured from the element type of the collection.

Multiple Capture Locations

After reading the previous section, you might be naturally wondering what happens when there are
multiple capture locations. If there are multiple capture locations, then the final captured type is the union
of all the types captured from each location.

Here is an example of a function that makes use of two capture locations.

defn append -lists <?T> (xs:List <?T>, ys:List <?T>) -> List <T> :

if empty?(xs) : ys

else : cons(head(xs), append -lists(tail(xs), ys))

The type argument T is captured from both the element type of xs and the element of type ys. Thus if we
call append-lists on a list of integers and a list of strings,

val xs = List(1, 2, 3)

val ys = List("Timon", "and", "Pumbaa ")

val zs = append -lists(xs, ys)

then the resulting type of zs is List<Int|String>.

Example: map-list

Let’s try writing our own polymorphic map function on lists. We’ll call ours map-list. map-list accepts a
function, f, and a list, xs, and returns a new list containing the results of calling f on each item in xs. To
start off, here’s the function definition without any type annotations.

defn map -list (f, xs) :

if empty?(xs) :

List()

else :

val y = f(head(xs))

val ys = map -list(f, tail(xs))

cons(y, ys)

CHAPTER 8. PARAMETRIC POLYMORPHISM 132

Let’s verify that it works as intended.

val xs = to -list ([" Timon", "and", "Pumbaa" "are", "good", "friends "])

val lengths = map -list(length , xs)

println(lengths)

Compiling and running the above prints out

(5 3 6 3 4 7)

Let’s start off with figuring out the type of xs, because it seems easier. It’s a list for sure, and map-list

should be able to work on lists of any type. So xs is therefore of type

xs:List <?T>

and T is a captured type argument for map-list.

Next, let’s figure out the type of f. It’s a function for sure, and it’s called with only a single argument. So
it’s at least

f:? -> ?

Next we know that f is called with items from xs, which is a list of T’s, so f has to accept T’s. Now we
know it’s at least

f:T -> ?

Finally, what is f allowed to return? Well, f is allowed to return anything actually. So let’s introduce
another captured type argument. The final type of f is

f:T -> ?S

Now that we know the types of its arguments, the last step is to figure out what map-list returns. We
know that it returns a list, and we also know that the list contains the results of calling f. Since we now
know that f returns S’s, therefore map-list returns a list of S’s. Here is the complete type signature for
map-list.

defn map -list <?T,?S> (f:T -> ?S, xs:List <?T>) -> List <S>

Let’s try our test code again with our typed map-list function and ensure it works as expected.

val xs = to -list ([" Timon", "and", "Pumbaa" "are", "good", "friends "])

val lengths = map -list(length , xs)

println(lengths)

Running the above prints out

(5 3 6 3 4 7)

as before.

To double check the inferred return type of map-list, let’s cast lengths to an obviously incorrect type,
and read what Stanza says about its type.

lengths as False

Compiling the above gives us the error

Cannot cast expression of type List <Int > to type False.

So Stanza says that lengths is a list of integers, which is correct.

CHAPTER 8. PARAMETRIC POLYMORPHISM 133

Example: map-both

Here’s some more practice on using captured type arguments. Here is the un-annotated definition for the
map-both function.

defn map -both (f, g, xs) :

for x in xs map :

[f(x), g(x)]

map-both accepts two functions, f and g, and a list, xs, and returns a list containing two-element tuples.
The first elements in all the tuples are the results of calling f on each item in xs, and the second elements
in all the tuples are the results of calling g on each item in xs.

Similar to before, the list, xs, is the easiest argument to figure out the type signature for.

xs:List <?T>

f needs to be a function that can be called with items from xs, and can return anything.

f:T -> ?S

g also needs to be a function that can called with items from xs, and can also return anything.

g:T -> ?R

map-both returns a list of tuples. The first elements in the tuples are results of calling f, and the second
elements are results of calling g.

List <[S, R]>

Thus the complete definition for map-both is

defn map -both <?T,?S,?R> (f:T -> ?S, g:T -> ?R, xs:List <?T>) -> List <[S, R]> :

for x in xs map :

[f(x), g(x)]

Let’s try it out on a list of strings.

val xs = to -list ([" Timon", "and", "Pumbaa", "are", "good", "friends "])

val zs = map -both(

xs,

fn (x) : x[2]

fn (y) : length(y) * 2)

println(zs)

which prints out

([’m’ 10] [’d’ 6] [’m’ 12] [’e’ 6] [’o’ 8] [’i’ 14])

Let’s cast zs to something silly to see what Stanza says about its type. Attempting to compile the following

zs as False

gives us this error.

Cannot cast expression of type List <[Char , Int]> to type False.

So zs has type List<[Char, Int]>, which is what we expect.

8.4 Parametric Types

You have been shown how to define your own types using deftype and also the shorthand defstruct. But
none of the types you’ve defined thus far accept type parameters. This stood out the most in our definition
of the Stack type which was only able to store String objects. We’ll now learn how to declare our own
parametric types.

CHAPTER 8. PARAMETRIC POLYMORPHISM 134

Declaring a Parametric Type

Here is an example of a simple type that takes two type parameters.

deftype Either <L,R>

Either contains two wrapped objects, a left object of type L, and a right object of type R.

This is all there is to defining a parametric type! The rest of this section covers mechanisms that have
already been introduced, but we’ll go through them in the context of the Either type for practice.

Declaring Multis

Let’s define the fundamental operations for an Either object, which are simply getter functions for
retrieving the two wrapped objects.

defmulti left <?L> (e:Either <?L,?>) -> L

defmulti right <?R> (e:Either <?,?R>) -> R

Notice that the left and right functions each take only a single type argument. The other type
parameter for the Either object is left as ? to indicate that it is free to be anything.

Creating Either Objects

Now let’s write a constructor function for creating Either objects. We’ll start with a function that can
only create Either<Int,String> objects.

defn Either (l:Int , r:String) :

new Either <Int ,String > :

defmethod left (this) : l

defmethod right (this) : r

Let’s try it out.

val e = Either (42, "Timon ")

println ("The left object is %_." % [left(e)])

println ("The right object is %_." % [right(e)])

prints out

The left object is 42.

The right object is Timon.

Polymorphic Constructor Function

Now that we can successfully create specific Either objects, let’s generalize our constructor function by
making it polymorphic using type arguments. The following declares Either as taking two explicit type
arguments, one for each wrapped object.

defn Either <L,R> (l:L, r:R) :

new Either <L,R> :

defmethod left (this) : l

defmethod right (this) : r

Now Either objects are created in the following way.

val e = Either <Int ,String >(42, "Timon")

CHAPTER 8. PARAMETRIC POLYMORPHISM 135

The way in which Either objects are created now resembles how we’ve been creating many of the other
types included in the core library, such as arrays and vectors. This is not a coincidence. The construction
function for arrays and vectors are also just regular functions that take explicit type arguments and return
instances of parametric types.

Parametric Structs

The defstruct expression also accepts type parameters for creating parametric structs. As mentioned
previously, the defstruct expression is simply a syntactic shorthand for declaring a new type, getter
functions for its fields, and a default construction function. Thus all the code we’ve written previously to
define the Either type can be neatly expressed as

defstruct Either <L,R> :

left: L

right: R

Constructor Function with Captured Arguments

Specifically for creating Either objects, it is also not necessary to have the user explicitly specify the types
of the left and right objects. Let’s make the constructor function more convenient to call by using captured
type arguments.

defn Either <?L,?R> (l:?L, r:?R) :

new Either <L,R> :

defmethod left (this) : l

defmethod right (this) : r

Now we can create an Either object like this

val e = Either (42, "Timon ")

and have Stanza automatically infer that e is an Either<Int,String> based on the types of 42 and
"Timon".

When not to Use Captured Arguments

We showed above how to write a constructor function using captured arguments that did not require the
left and right object types to be passed in explicitly to Either. This makes the constructor function for
Either objects very similar to the constructor function for List objects, which also does not require any
explicit type arguments. This is not always an appropriate thing to do.

Let us suppose that Either is a mutable datastructure; that we can change the left and right objects after
the object has been created. The type definition for Either would stay the same, but it would gain two
more fundamental operations.

defmulti left <?L> (e:Either <?L,?>) -> L

defmulti right <?R> (e:Either <?,?R>) -> R

defmulti set -left <?L> (e:Either <?L,?>, v:L) -> False

defmulti set -right <?R> (e:Either <?,?R>, v:R) -> False

Notice, especially, the capture locations of the type arguments in the setter functions.

The constructor function would be changed to now accept not the left and right objects, but the initial left
and right objects, since they may change later on.

CHAPTER 8. PARAMETRIC POLYMORPHISM 136

defn Either <?L,?R> (l0:?L, r0:?R) :

var l = l0

var r = r0

new Either <L,R> :

defmethod left (this) : l

defmethod right (this) : r

defmethod set -left (this , v:L) : l = v

defmethod set -right (this , v:R) : r = v

For the next part, let us again assume that we have definitions for some basic shapes.

deftype Shape

deftype Circle <: Shape

deftype Rectangle <: Shape

defmethod print (o:OutputStream , c:Circle) : print(o, "Circle ")

defmethod print (o:OutputStream , r:Rectangle) : print(o, "Rectangle ")

Let’s try creating a mutable Either object now.

defn my-favorite -shape () -> Shape :

new Circle

val e = Either (42, my-favorite -shape ())

println (" After creation :")

println ("The left object is %_" % [left(e)])

println ("The right object is %_" % [right(e)])

set -left(e, 256)

set -right(e, new Rectangle)

println ("\ nAfter mutation :")

println ("The left object is %_" % [left(e)])

println ("The right object is %_" % [right(e)])

Compiling and running the above prints out

After creation:

The left object is 42

The right object is Circle

After mutation:

The left object is 256

The right object is Rectangle

Everything seems to be working, but pay attention to what happens next.

The type signature for my-favorite-shape is not as precise as it could be. It’s annotated to return Shape,
but it’s more precise to say that it returns Circle. So let’s improve my-favorite-shape’s type signature.

defn my-favorite -shape () -> Circle :

new Circle

Now try compiling and running the program again. It will now give this error.

Cannot call function set -right of type (Either <?, Circle >, Circle) -> False

with arguments of type (Either <Int , Circle >, Rectangle).

What is going on? Why would changing (actually improving) the type signature for my-favorite-shape
affect the later call to set-right?

The problem, as is evident in the error message, is that the inferred type for e is Either<Int, Circle>.
This is not right. Even though the initial right object was a Circle, that doesn’t mean we want e to only
ever hold Circle objects as its right object.

This is one of those cases where using a captured type argument is inappropriate. For a mutable Either

object, the types of the left and right objects should be passed in explicitly.

Here is the constructor function rewritten to use explicit type arguments.

CHAPTER 8. PARAMETRIC POLYMORPHISM 137

defn Either <L,R> (l0:L, r0:R) :

var l = l0

var r = r0

new Either <L,R> :

defmethod left (this) : l

defmethod right (this) : r

defmethod set -left (this , v:L) : l = v

defmethod set -right (this , v:R) : r = v

And here is our original test code rewritten to pass in explicit type arguments.

defn my-favorite -shape () -> Shape :

new Circle

val e = Either <Int , Shape >(42, my-favorite -shape ())

println (" After creation :")

println ("The left object is %_" % [left(e)])

println ("The right object is %_" % [right(e)])

set -left(e, 256)

set -right(e, new Rectangle)

println ("\ nAfter mutation :")

println ("The left object is %_" % [left(e)])

println ("The right object is %_" % [right(e)])

Verify that it still compiles and runs correctly.

At this point, we can try making the same change to my-favorite-shape’s type signature.

defn my-favorite -shape () -> Circle :

new Circle

This time, however, the program still compiles and continues to run as before.

Here are the basic rules of thumb for choosing between using explicit or captured type arguments. If you’re
creating an immutable object then feel free to use captured type arguments. If you’re creating a mutable
object, then use explicit type arguments.

These issues surrounding captured type arguments and mutable objects is also why to-array and
to-vector require explicit type arguments and why to-list does not.

8.5 Match Expressions and Type Erasure

One subtlety concerning Stanza’s parametric type system is a concept called type erasure. It roughly
means that, given a program, if we replace every type argument with the ? type, it should still run and
compute the same result (providing that the original program doesn’t fail). Said another way, the setting
of a type argument can never change what is computed by a program.

Here is an example of incorrectly attempting to use a type argument to affect which branch is taken in a
match expression.

defn check -if<T> (x) :

match(x) :

(x:T) : true

(x) : false

Let’s try it out on a String object.

println(check -if <Int >(" Timon "))

Compiling and running the above prints out

CHAPTER 8. PARAMETRIC POLYMORPHISM 138

FATAL ERROR: Cannot cast value to type.

at test.stanza :15.8

at test.stanza :18.8

Here is what is happening underneath. The dispatch type in a match branch has all of its type arguments
and parametric types erased. Thus the code above is equivalent to the following

defn check -if<T> (x) :

match(x) :

(y:?) :

val x = y as T

true

(y:?) :

false

and the error message arises because y cannot be cast to a T object. We intentionally designed Stanza so
that there is no possible way to write a function such as check-if.

8.6 Revisiting Stack

At this point, we have all the requisite knowledge for writing a parametric version of our Stack class from
chapter 6. Here are our old definitions for the Stack type and its fundamental operations.

deftype Stack <: Collection <String >

defmulti push (s:Stack , x:String) -> False

defmulti pop (s:Stack) -> String

defmulti empty? (s:Stack) -> True|False

A Stack is declared to be a collection of strings, and its fundamental operations allow us to push and pop
strings from it.

Here is the original constructor function.

defn Stack (capacity:Int) -> Stack :

val items = Array <String >(capacity)

var size = 0

new Stack :

defmethod push (this , x:String) :

if size == capacity : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

print -all(o, join(this , " "))

print(o, "]")

defmethod to-seq (this) :

take -n(size , items)

Parametric Type Declaration

The first step is to declare Stack as a parametric type.

deftype Stack <T> <: Collection <T>

Thus, Stack now takes a type parameter, T, that indicates what types of objects the stack may hold, and is
also no longer a collection of strings. It is now a collection of T’s.

CHAPTER 8. PARAMETRIC POLYMORPHISM 139

Polymorphic Fundamental Operations

The second step is to declare its fundamental operations as polymorphic functions.

defmulti push <?T> (s:Stack <?T>, x:T) -> False

defmulti pop <?T> (s:Stack <?T>) -> T

defmulti empty? (s:Stack) -> True|False

both push and pop now accept a captured type argument, T, that indicates the element type of the stack
object. Here are some points to take note of. Notice that the x argument for push is not a capture location
for T. This is consistent with our earlier discussion in the section on capture locations. Also notice that the
empty? multi is unchanged, as the types of the objects in a stack are not needed to check whether the stack
is empty.

Polymorphic Constructor Function

The last step is to make its constructor function polymorphic.

defn Stack <T> (capacity:Int) -> Stack <T> :

val items = Array <T>(capacity)

var size = 0

new Stack :

defmethod push (this , x:T) :

if size == capacity : fatal("Stack is full !")

items[size] = x

size = size + 1

defmethod pop (this) :

if size == 0 : fatal ("Stack is empty !")

size = size - 1

items[size]

defmethod empty? (this) :

size == 0

defmethod print (o:OutputStream , this) :

print(o, "Stack containing [")

print -all(o, join(this , " "))

print(o, "]")

defmethod to-seq (this) :

take -n(size , items)

The constructor function now takes an explicit type argument, T, indicating the element type of the stack
object, and returns a Stack<T>. Notice that the backing array, items, is no longer an Array<String>. It
is now declared as an Array<T> in order to hold the items in the stack. push now also accepts a T value
instead of a String value. The rest of the function is unchanged.

Trying It Out

Let’s try out our parametric Stack type using a variation of our original test code.

defn main () :

val s = Stack <Int >(10)

for x in [1, 5, 2, 42, -11, 2, 5, 10, -42] do :

push(s, x)

println ("1. Contents of s")

println(s)

println ("\n2. Index of 42")

println(index -of(s, 42))

println ("\n3. Does it contain any negative numbers ?")

println(any?({_ < 0}, s))

CHAPTER 8. PARAMETRIC POLYMORPHISM 140

println ("\n4. Are all numbers negative ?")

println(all?({_ < 0}, s))

println ("\n5. What are the negative numbers ?")

val cap -s = filter ({_ < 0}, s)

println -all(join(cap -s, ", "))

println ("\n6. What are its unique elements ?")

println(unique(s))

main()

Compiling and running the above prints out

1. Contents of s

Stack containing [1 5 2 42 -11 2 5 10 -42]

2. Index of 42

3

3. Does it contain any negative numbers?

true

4. Are all numbers negative?

false

5. What are the negative numbers?

-11, -42

6. What are its unique elements?

(1 5 2 42 -11 10 -42)

Our parametric stack type is now quite general. It can hold items of different types, and it supports all the
operations in the core sequence library. Actually, the Array and Vector types in the core library are
defined in much the same way as Stack.

Chapter 9

Advanced Control Flow

Thus far, the only control flow mechanism you’ve been shown was the label construct for creating labeled
scopes. But this one construct was powerful enough to express early returns from functions, early breaks
from loops, and also (though we haven’t shown it) early jumps to the next loop iteration. Each of the
above functionality has traditionally been a separate keyword and language feature in other languages, but
they’re all expressible with just the label construct in Stanza. It is a powerful and general mechanism.

In actuality, Stanza only has a single control flow mechanism, called targetable coroutines. The label

construct is just a common usage pattern for them. In this chapter we’ll learn about the other common
usage pattern of coroutines: attempts and failures, exception handlers, and generators. At the very end,
we’ll show you the general coroutine construct, along with some examples demonstrating their use.

9.1 First Class Labeled Scopes

Here is a function that finds the smallest power of two that is greater or equal to the given argument, n.

defn min -pow -2 (n:Int) :

label <Int > return :

var x = 1

while true :

if x >= n : return(x)

x = x * 2

fatal(" Unreachable ")

Let’s try it out.

defn main () :

defn test (n:Int) :

println ("The minimum power of 2 greater or equal to %_ is %_." %

[n, min -pow -2(n)])

test (10)

test (100)

test (1000)

test (10000)

test (100000)

test (1000000)

main()

Compiling and running the above prints out

The minimum power of 2 greater or equal to 10 is 16.

The minimum power of 2 greater or equal to 100 is 128.

The minimum power of 2 greater or equal to 1000 is 1024.

141

CHAPTER 9. ADVANCED CONTROL FLOW 142

The minimum power of 2 greater or equal to 10000 is 16384.

The minimum power of 2 greater or equal to 100000 is 131072.

The minimum power of 2 greater or equal to 1000000 is 1048576.

Pulling Out the Body

That’s fairly standard so far. But now let’s pull out the body of the while loop into a separate function,
called pow-2?. It accepts an argument, x, that is the current number being tested, an argument, n, as the
limit we’re trying to reach, and also a function called return, which we’ll explain later.

defn pow -2? (x:Int , n:Int , return:Int -> Void) -> Int :

if x >= n : return(x)

else : x * 2

pow-2? first checks whether x is greater or equal to n, and calls return with x if it is. Otherwise it returns
the next value of x to test, which is x * 2.

We now update the min-pow-2 function to call pow-2?.

defn min -pow -2 (n:Int) :

label <Int > return :

var x = 1

while true :

x = pow -2?(x, n, return)

fatal(" Unreachable ")

Compile and run the program to verify that it still works.

What is happening here!? We’ve somehow passed the exit function out of min-pow-2 and into pow-2?.
Then when pow-2? called return, it returned not from pow-2?, but from min-pow-2!.

Let’s review the definition of the label construct. Here is its general form.

label <T> exit :

body

The label construct requires the type it returns, T, the name of the exit function, exit, and the body to
execute, body. label creates an exit function of type T -> Void with the name exit, and then executes
body. If body never calls the exit function then the result of body is returned by label. If body calls the
exit function then label immediately returns the argument passed to the exit function. The return type
Void for the exit function indicates that it doesn’t return to its caller.

There is nothing in the description of label preventing us from passing out the exit function, so the call to
return in pow-2? is simply causing the label construct to return x, which is then returned by min-pow-2.

Storing the Exit Function

We can even store the exit function in a variable if we like. Here’s a global variable

var RETURN: Int -> Void

into which we will store the exit function. Thus the exit function will no longer be passed in to pow-2? as
an argument.

defn pow -2? (x:Int , n:Int) -> Int :

if x >= n : RETURN(x)

else : x * 2

It will instead be stored in the global variable before pow-2? is called.

CHAPTER 9. ADVANCED CONTROL FLOW 143

defn min -pow -2 (n:Int) :

label <Int > return :

RETURN = return

var x = 1

while true :

x = pow -2?(x, n)

fatal(" Unreachable ")

Compile and verify that the program still works as before.

Here you’re starting to see just how flexible the label construct really is. Storing the exit function seems
like a strange thing to want to do but keep it in the back of your mind as we talk about the other
constructs.

9.2 Dynamic Wind

One of the issues that accompanies having a powerful control flow mechanism is that in a sequence of
expressions, evaluating the first expression does not guarantee that the last one will be evaluated.

f()

g()

h()

For example, in the above sequence, even after f returns, there is no guarantee that h will be called. If g
calls an exit function then h will be skipped entirely.

Let us suppose that we do not want to pass in the limit, n, as an argument to pow-2?. We would like to
keep it stored in a global variable called LIMIT and set it to the appropriate value only during the call to
pow-2?. At all other times, LIMIT should retain its initial value of 0. Here is an initial attempt.

var LIMIT: Int = 0

var RETURN: Int -> Void

defn pow -2? (x:Int) -> Int :

if x >= LIMIT : RETURN(x)

else : x * 2

defn min -pow -2 (n:Int) :

label <Int > return :

RETURN = return

var x = 1

while true :

val old -limit = LIMIT

LIMIT = n

x = pow -2?(x)

LIMIT = old -limit

fatal(" Unreachable ")

defn main () :

defn test (n:Int) :

println ("The minimum power of 2 greater or equal to %_ is %_." %

[n, min -pow -2(n)])

test (10)

test (100)

test (1000)

test (10000)

test (100000)

test (1000000)

main()

println (" After main , LIMIT is %_." % [LIMIT])

Printing and compiling the above prints out

CHAPTER 9. ADVANCED CONTROL FLOW 144

The minimum power of 2 greater or equal to 10 is 16.

The minimum power of 2 greater or equal to 100 is 128.

The minimum power of 2 greater or equal to 1000 is 1024.

The minimum power of 2 greater or equal to 10000 is 16384.

The minimum power of 2 greater or equal to 100000 is 131072.

The minimum power of 2 greater or equal to 1000000 is 1048576.

After main , LIMIT is 1000000.

So min-pow-2 is working correctly, but LIMIT is not being restored back to its original value. What is
happening? Well the call to pow-2? in

LIMIT = n

x = pow -2?(x)

LIMIT = old -limit

may call the exit function, return. If that happens, then the label construct immediately returns and the
last LIMIT = old-limit expression is never evaluated.

Stanza provides the special function dynamic-wind to handle these situations. It allows you to surround a
body of code between some wind in and wind out code. The wind in code is guaranteed to execute
whenever the control flow enters the body, and the wind out code is guaranteed to execute whenever the
control flow exits the body. Here is how it’s used.

defn min -pow -2 (n:Int) :

label <Int > return :

RETURN = return

var x = 1

while true :

val old -limit = LIMIT

dynamic -wind(

fn () :

LIMIT = n

fn () :

x = pow -2?(x)

fn (final) :

LIMIT = old -limit)

fatal(" Unreachable ")

The wind in, body, and wind out code is given to dynamic-wind as three anonymous functions. The final

argument for the wind out code is a boolean value that indicates whether it is guaranteed to be the last
time the wind out code is called. In this example, final will always be true.

Now compiling and running the program again prints out

The minimum power of 2 greater or equal to 10 is 16.

The minimum power of 2 greater or equal to 100 is 128.

The minimum power of 2 greater or equal to 1000 is 1024.

The minimum power of 2 greater or equal to 10000 is 16384.

The minimum power of 2 greater or equal to 100000 is 131072.

The minimum power of 2 greater or equal to 1000000 is 1048576.

After main , LIMIT is 0.

indicating the LIMIT is properly being reset to its original value.

9.3 Dynamically Scoped Variables

In the above example, we say that LIMIT is being used as a dynamically scoped variable. This is a common
pattern and Stanza provides a syntactic shorthand for our call to dynamic-wind.

Here is the min-pow-2 function written using the let-var shorthand.

CHAPTER 9. ADVANCED CONTROL FLOW 145

defn min -pow -2 (n:Int) :

label <Int > return :

RETURN = return

var x = 1

while true :

let -var LIMIT = n :

x = pow -2?(x)

fatal(" Unreachable ")

The general form of let-var is

let -var x = v :

body

It temporarily sets the x variable to the value v before executing body. x is restored to its previous value
after body is finished executing.

9.4 Attempts and Failures

Attempts and failures are syntactic sugar for another use case of targetable coroutines that operate very
similarly to labeled scopes. Here is an example.

defn read -letter (xs:Seq <Char >) -> Char :

if not letter ?(peek(xs)) : fail()

next(xs)

defn read -digit (xs:Seq <Char >) -> Char :

if not digit?(peek(xs)) : fail()

next(xs)

defn read -all (xs:Collection <Char >) :

val xs-seq = to -seq(xs)

while not empty?(xs-seq) :

attempt :

println ("Read letter: %_" % [read -letter(xs -seq)])

else attempt :

println ("Read digit: %_" % [read -digit(xs-seq)])

else :

println ("Read something else: %~" % [next(xs-seq)])

read -all ("42 is the answer .")

Compiling the above prints out

Read digit: 4

Read digit: 2

Read something else: ’ ’

Read letter: i

Read letter: s

Read something else: ’ ’

Read letter: t

Read letter: h

Read letter: e

Read something else: ’ ’

Read letter: a

Read letter: n

Read letter: s

Read letter: w

Read letter: e

Read letter: r

Read something else: ’.’

CHAPTER 9. ADVANCED CONTROL FLOW 146

The function read-all calls read-letter and read-digit in an attempt block. If the block evaluates
without ever calling fail then the result of the block is returned by attempt. If the block calls fail, then
attempt immediately returns the result of evaluating the code in the else branch.

9.5 Example: S-Expression Parser

Here is an example of using attempt and fail to program a simple s-expression parser. An s-expression, in
this case, will be defined as either

1. a positive integer,

2. a symbol consisting of letters,

3. or a list containing more s-expressions.

Overall Structure

Here is the basic structure of the parser.

defn parse -sexp (sexp:String) -> List :

val chars = to-seq(sexp)

defn eat -while (pred?: Char -> True|False) -> String :

...

defn eat -whitespace () -> False :

... calls eat -while ...

defn parse -symbol () -> Symbol :

... calls eat -while ...

defn parse -number () -> Int :

... calls eat -while ...

defn parse -sequence () -> List :

... calls eat -whitespace , parse -symbol , parse -number , and parse -list

defn parse -list () -> List :

... calls parse -list ...

parse -sequence ()

...

parse-sexp is given a string, and returns a list of s-expressions. Upon entering the function, we ask to view
the string as a sequence of characters, chars. eat-while and eat-whitespace are helper functions.
parse-symbol, parse-number, parse-sequence, and parse-list are mutually recursive functions that
parse symbols, numbers, sequences of s-expressions, and lists of s-expressions.

Helper Functions

The eat-while, and eat-whitespace functions are helper functions for reading from chars. eat-while
takes a predicate function, pred?, and eats characters from chars as long as pred? returns true. It
returns a string containing the eaten characters. eat-whitespace eats all leading spaces in chars. Here
are their definitions.

defn eat -while (pred?: Char -> True|False) -> String :

string -join(take -while(pred?, chars))

defn eat -whitespace () -> False :

CHAPTER 9. ADVANCED CONTROL FLOW 147

eat -while({_ == ’ ’})

false

Parsing Symbols

The parse-symbol function eats and returns the next symbol from chars. If the next character in chars

is not a letter, then parse-symbol fails.

defn parse -symbol () -> Symbol :

if not letter ?(peek(chars)) : fail()

to-symbol(eat -while(letter ?))

Parsing Numbers

The parse-number function eats and returns the next positive integer from chars. If the next character in
chars is not a digit, or if the number cannot be represented in 32 bits, then parse-number fails.

defn parse -number () -> Int :

if not digit?(peek(chars)) : fail()

val x = to -int(eat -while(digit ?))

if x is-not Int : fail()

x as Int

Parsing Sequences

The parse-sequence function reads as many s-expressions as possible by calling parse-symbol,
parse-number, and parse-list repeatedly.

defn parse -sequence () -> List :

eat -whitespace ()

if empty?(chars) :

List()

else :

attempt : cons(parse -symbol(), parse -sequence ())

else attempt : cons(parse -number(), parse -sequence ())

else attempt : cons(parse -list(), parse -sequence ())

else : List()

Notice the use of attempt to first try parsing a symbol, and then if that fails to then try parsing a number,
followed by trying to parse a list.

Parsing Lists

The parse-list function eats and returns the next list from chars. A list is simply a sequence of
s-expressions surrounded by () characters. If the next character is not an opening parenthesis then
parse-list fails.

defn parse -list () -> List :

if peek(chars) != ’(’ : fail()

next(chars)

val items = parse -sequence ()

if empty?(chars) : fatal(" Unclosed opening parenthesis .")

else if peek(chars) == ’)’ : (next(chars), items)

else : fatal(" Expected closing parenthesis but got %~." % [next(chars)])

CHAPTER 9. ADVANCED CONTROL FLOW 148

Driver

Finally, to start off the function, we attempt to read as many s-expressions as possible from chars using
parse-sequence.

val items = parse -sequence ()

if empty?(chars) : items

else : fatal(" Unexpected character: %~." % [next(chars)])

Listing

Here is the complete definition of parse-sexp.

defn parse -sexp (sexp:String) :

val chars = to-seq(sexp)

defn eat -while (pred?: Char -> True|False) -> String :

string -join(take -while(pred?, chars))

defn eat -whitespace () -> False :

eat -while({_ == ’ ’})

false

defn parse -symbol () -> Symbol :

if not letter ?(peek(chars)) : fail()

to-symbol(eat -while(letter ?))

defn parse -number () -> Int :

if not digit?(peek(chars)) : fail()

val x = to-int(eat -while(digit ?))

if x is-not Int : fail()

x as Int

defn parse -sequence () -> List :

eat -whitespace ()

if empty?(chars) :

List()

else :

attempt : cons(parse -symbol(), parse -sequence ())

else attempt : cons(parse -number(), parse -sequence ())

else attempt : cons(parse -list(), parse -sequence ())

else : List()

defn parse -list () -> List :

if peek(chars) != ’(’ : fail()

next(chars)

val items = parse -sequence ()

if empty?(chars) : fatal(" Unclosed opening parenthesis .")

else if peek(chars) == ’)’ : (next(chars), items)

else : fatal(" Expected closing parenthesis but got %~." % [next(chars)])

val items = parse -sequence ()

if empty?(chars) : items

else : fatal(" Unexpected character: %~." % [next(chars)])

Trying it Out

Let’s try it out on the following string.

do(println , parse -sexp("This (is) (commonly (called an (S) (Expression)))"))

When compiled and ran it prints out

CHAPTER 9. ADVANCED CONTROL FLOW 149

This

(is)

(commonly (called an (S) (Expression)))

Unveiling The Internals

The attempt construct is just syntactic sugar for a function call.

attempt : conseq

else : alt

is equivalent to

with -attempt(

fn () : conseq

fn () : alt)

As an exercise, try and implement your own with-attempt function by using the label construct.

9.6 Exception Handling

Our s-expression parser from the previous example fails when called with invalid input (though with very
nice error messages). Here is what happens if we forget a closing parenthesis at the end.

do(println , parse -sexp("This (is) (commonly (called an (S) (Expression))"))

Compiling and running the above prints out

FATAL ERROR: Unclosed opening parenthesis.

at test.stanza :39.25

at test.stanza :32.29

at core/core.stanza :3725.13

at core/core.stanza :847.16

at core/core.stanza :3724.14

...

But what if we cannot guarantee that the input is correct? Suppose we want users to type an arbitrary
string into the terminal and print the parsed s-expression if it’s well formed, or else ask them to try again if
it’s not.

A potential solution would be to write another function called sexp? that returns true or false depending
on whether its argument is a well formed string. But checking whether an s-expression is well formed is
almost as much work as parsing it, so that’s an inefficient solution.

Stanza provides us a mechanism for handling this called exceptions.

Exception Objects

The first step is to declare our own Exception types, one for each type of error the parser can encounter.

defstruct UnclosedParenthesis <: Exception

defmethod print (o:OutputStream , e:UnclosedParenthesis) :

print(o, "Unclosed opening parenthesis .")

defstruct UnmatchedParenthesis <: Exception : (char:Char)

defmethod print (o:OutputStream , e:UnmatchedParenthesis) :

print(o, "Expected closing parenthesis but got %~." % [char(e)])

defstruct UnexpectedCharacter <: Exception : (char:Char)

CHAPTER 9. ADVANCED CONTROL FLOW 150

defmethod print (o:OutputStream , e:UnexpectedCharacter) :

print(o, "Unexpected character: %~." % [char(e)])

There are three different errors that are detected by our parser.

1. The string is missing a closing parenthesis at the end.

2. We are currently reading a list and encountered a strange character.

3. We’ve read as many s-expressions as possible and there is a strange character left over.

Throwing Exceptions

The next step is to change the calls to fatal to calls to throw with our newly defined Exception objects.

defn parse -sexp (sexp:String) :

...

defn parse -list () -> List :

...

if empty?(chars) : throw(UnclosedParenthesis ())

else if peek(chars) == ’)’ : (next(chars), items)

else : throw(UnmatchedParenthesis(next(chars)))

val items = parse -sequence ()

if empty?(chars) : items

else : throw(UnexpectedCharacter(next(chars)))

Catching Exceptions

The final step is to catch the thrown exceptions. We can decide which types of exceptions to catch, and
which not to. In this example, we’ll assume that the string doesn’t contain any strange characters and
catch only the unclosed parenthesis error.

try :

do(println , parse -sexp("This (is) (commonly (called an (S) (Expression))"))

catch (e:UnclosedParenthesis) :

println ("You forgot to close an opening parenthesis. Please try again .")

Compiling and running the program now prints out

You forgot to close an opening parenthesis. Please try again.

Here is the general form of the try construct.

try :

body

catch (e:ExceptionA) :

a-handler

catch (e:ExceptionB) :

b-handler

...

The try construct evaluates the given body after installing the given exception handlers. If body is
evaluated without ever calling throw then its result is returned by try. If body calls throw with some
Exception object, then try immediately searches for the first exception handler that can accept the
Exception object and returns the result of evaluating that handler.

CHAPTER 9. ADVANCED CONTROL FLOW 151

9.7 Generators

The control flow constructs you’ve been introduced to so far, labeled scopes, attempts and failures, and
exceptions, have all served the purpose of leaving a block of code. Generators are the first control flow
construct you will learn capable of resuming a block of code.

Here is a generator that yields the first three positive integers.

val xs:Seq <Int > = generate <Int > :

println (" Yielding One")

yield (1)

println (" Yielding Two")

yield (2)

println (" Yielding Three")

yield (3)

Notice that the generate construct returns a Seq. Let’s try printing out the items in the sequence.

println ("The first item in xs is")

println(next(xs))

println ("The second item in xs is")

println(next(xs))

println ("The third item in xs is")

println(next(xs))

Compiling and running the above prints out

The first item in xs is

Yielding One

1

The second item in xs is

Yielding Two

2

The third item in xs is

Yielding Three

3

The Ability to Resume

It’s worth paying attention to the order in which the messages are printed out. The snippet

println ("The first item in xs is")

println(next(xs))

by itself, prints out

The first item in xs is

Yielding One

1

Thus the call to next(xs) causes control to enter the block of code in the generate construct. The
message "Yielding One" is printed out, and then the call to yield(1) leaves the generate construct and
1 is the return value of next(xs).

The next snippet

println ("The second item in xs is")

println(next(xs))

prints out

The second item in xs is

Yielding Two

2

CHAPTER 9. ADVANCED CONTROL FLOW 152

Thus the call to next(xs) causes control to re-enter the block generate construct, resuming from just
after the first call to yield. The message "Yielding Two" is printed out, and then the call to yield(2)

leaves the generate construct once again and 2 is the return value of the second call to next(xs).

The last snippet

println ("The third item in xs is")

println(next(xs))

prints out

The third item in xs is

Yielding Three

3

Similarly, the call to next(xs) resumes the block in the generate construct from just after the second call
to yield. The message "Yielding Three" is printed out, and then the call to yield(3) leaves the
generate construct once again and 3 is the return value of the third call to next(xs).

Thus the generate construct provides a very convenient way of creating a lazily constructed sequence.

General Form

Here is the general form of the generate construct.

generate <T> :

body

generate returns a Seq<T> by lazily executing the given body in a scope containing the generation
functions, yield and break.

yield is of type T -> False and its argument becomes an element in the generated Seq. Execution of the
generate block pauses at yield, and is resumed on the next call to next on the sequence.

break is both of type () -> Void and T -> Void. If no argument is given to break, then execution of the
generate block ends here and marks the end of the generated sequence. If an argument is given to break,
then that element is first yielded before the generate block is ended.

If the generated type, T, is not explicitly provided, then it is assumed to be ? by default.

Example: Flattening a Tuple

In this example, we’ll determine whether two tuples contain the same elements as each other if we lay out
their elements in depth-first order. For example, the tuple

[[1] [2 [3]] [[4 5] 6]]

contains the elements 1, 2, 3, 4, 5, 6 once laid out in depth-first order.

Here’s the most straightforward way of doing this. We’ll write a function called flatten that returns a
Vector containing a tuple’s elements in depth-first order.

defn flatten (x:Tuple) -> Vector :

val v = Vector <?>()

defn loop (x) :

match(x) :

(x:Tuple) : do(loop , x)

(x) : add(v, x)

loop(x)

v

Let’s try it out.

CHAPTER 9. ADVANCED CONTROL FLOW 153

println(flatten ([[1] [2 [3]] [[4 5] 6]]))

Compiling and running the above prints out

[1 2 3 4 5 6]

To check whether two tuples contain the same elements, we can just flatten each of them and then compare
the elements.

defn same -elements? (a:Tuple , b:Tuple) :

if all?(equal?, flatten(a), flatten(b)) :

println ("%_ and %_ have the same elements ." % [a, b])

else :

println ("%_ and %_ have different elements ." % [a, b])

Let’s test it out on the following tuples.

same -elements ?(

[[1] [2 [3]] [[4 5] 6]]

[1 [[2 3 4] [5]] [6]])

same -elements ?(

[[1] [2 [3]] [[4 5] 6]]

[[[0] 2] [3 [4 5]] 6])

Compiling and running the above prints out

[[1] [2 [3]] [[4 5] 6]] and [1 [[2 3 4] [5]] [6]] have the same elements.

[[1] [2 [3]] [[4 5] 6]] and [[[0] 2] [3 [4 5]] 6] have different elements.

Notice though, that in both cases, we computed a full flattening of both tuples before checking to see
whether they are equal. This is obviously inefficient in the second case since we can tell they are clearly
different just by examining their first element. How do we avoid computing the full flattening?

The solution is to lazily compute the flattening. Let’s change flatten to use the generate construct to
lazily compute the flattened tuples. To track how much of the tuples are being flattened let’s also add a
print statement.

defn flatten (x:Tuple) -> Seq :

val index = to-seq(0 to false)

generate :

defn loop (x) :

match(x) :

(x:Tuple) :

do(loop , x)

(x) :

println (" Yielding Item %_" % [next(index)])

yield(x)

loop(x)

Compiling and running the program again prints out

Yielding Item 0

Yielding Item 0

Yielding Item 1

Yielding Item 1

Yielding Item 2

Yielding Item 2

Yielding Item 3

Yielding Item 3

Yielding Item 4

Yielding Item 4

Yielding Item 5

Yielding Item 5

[[1] [2 [3]] [[4 5] 6]] and [1 [[2 3 4] [5]] [6]] have the same elements.

Yielding Item 0

Yielding Item 0

[[1] [2 [3]] [[4 5] 6]] and [[[0] 2] [3 [4 5]] 6] have different elements.

CHAPTER 9. ADVANCED CONTROL FLOW 154

Thus the results are the same as before, and you can see that, for the second comparison, both generators
(one for each tuple) are only computing up to the first element.

9.8 Coroutines

The label, attempt, try, and generate constructs are all specific usage patterns of Stanza’s targetable
coroutine system. Here we’ll show you how to use the coroutine system in its full generality. It is rare in
daily programming to encounter a problem that requires a use of coroutines that isn’t already handled by
one of the special case constructs. But for implementing libraries and frameworks that make heavy use of
concurrency and non-standard control flow, coroutines may be indispensable.

Sending Things Out

Here is the function that will represent our coroutine body.

defn my-process (co:Coroutine <Int ,String >, a:Int) -> String :

println (" Passing out Timon")

suspend(co, "Timon")

println (" Passing out and")

suspend(co, "and")

println (" Passing out Pumbaa ")

suspend(co, "Pumbaa ")

println (" Coroutine is done")

"Done"

The type Coroutine<Int,String> represents a coroutine for which integers are sent into the coroutine,
and for which strings are sent back from the coroutine. The function for sending values out of the
coroutine is suspend.

Let’s now create our coroutine object and resume it a few times.

println (" Create coroutine ")

val co = Coroutine <Int ,String >(my-process)

println ("\ nResume with 42")

val x = resume(co, 42)

println ("Got back x = %_" % [x])

println ("\ nResume with 43")

val y = resume(co, 43)

println ("Got back y = %_" % [y])

println ("\ nResume with 44")

val z = resume(co, 44)

println ("Got back z = %_" % [z])

println ("\ nResume with 45")

val w = resume(co, 45)

println ("Got back w = %_" % [w])

Notice that resume is called with integers. When the above is compiled and ran it prints out

Create coroutine

Resume with 42

Passing out Timon

Got back x = Timon

Resume with 43

Passing out and

Got back y = and

CHAPTER 9. ADVANCED CONTROL FLOW 155

Resume with 44

Passing out Pumbaa

Got back z = Pumbaa

Resume with 45

Coroutine is done

Got back w = Done

Thus suspend acts much like yield did for the generate construct, and resume acts much like next did.
This is no accident of course. The generate construct is implemented in terms of suspend and resume

underneath.

Breaking Things Off

In addition to suspend, a function called break can also be used to send values out of a coroutine. The
difference is that a call to break cannot later be resumed.

Let’s change our my-process function to send out "Pumbaa" with break instead of suspend.

defn my-process (co:Coroutine <Int ,String >, a:Int) -> String :

println (" Passing out Timon")

suspend(co, "Timon")

println (" Passing out and")

suspend(co, "and")

println (" Passing out Pumbaa ")

break(co, "Pumbaa ")

println (" Coroutine is done")

"Done"

Compiling and running the program again prints out

Create coroutine

Resume with 42

Passing out Timon

Got back x = Timon

Resume with 43

Passing out and

Got back y = and

Resume with 44

Passing out Pumbaa

Got back z = Pumbaa

Resume with 45

FATAL ERROR: Cannot resume coroutine. Coroutine is already closed.

at core/core.stanza :984.13

at core/core.stanza :862.16

at core/core.stanza :897.40

at core/core.stanza :862.16

at test.stanza :31.8

The coroutine is closed after the call to break, and thus our call to resume fails.

Sending Things In

The obvious unanswered question now is: what is happening with the 42, 43, 44, and 45 values that
resume is being called with? To answer that, let’s update our my-process function to print out the return
values of suspend (and change the call to break back into suspend).

CHAPTER 9. ADVANCED CONTROL FLOW 156

defn my-process (co:Coroutine <Int ,String >, a:Int) -> String :

println ("Came in a = %_" % [a])

println (" Passing out Timon")

val b = suspend(co, "Timon")

println ("Came in b = %_" % [b])

println (" Passing out and")

val c = suspend(co, "and")

println ("Came in c = %_" % [c])

println (" Passing out Pumbaa ")

val d = suspend(co, "Pumbaa ")

println ("Came in d = %_" % [d])

println (" Coroutine is done")

"Done"

println (" Create coroutine ")

val co = Coroutine <Int ,String >(my-process)

println ("\ nResume with 42")

val x = resume(co, 42)

println ("Got back x = %_" % [x])

println ("\ nResume with 43")

val y = resume(co, 43)

println ("Got back y = %_" % [y])

println ("\ nResume with 44")

val z = resume(co, 44)

println ("Got back z = %_" % [z])

println ("\ nResume with 45")

val w = resume(co, 45)

println ("Got back w = %_" % [w])

Compiling and running the program again prints out

Create coroutine

Resume with 42

Came in a = 42

Passing out Timon

Got back x = Timon

Resume with 43

Came in b = 43

Passing out and

Got back y = and

Resume with 44

Came in c = 44

Passing out Pumbaa

Got back z = Pumbaa

Resume with 45

Came in d = 45

Coroutine is done

Got back w = Done

Thus, suspend sends its argument out from the coroutine, and returns the value sent into the coroutine.
resume sends its argument into the coroutine, and returns the value sent out from the coroutine.

CHAPTER 9. ADVANCED CONTROL FLOW 157

Closing Things Off

From outside the coroutine body, we may also choose to close a coroutine when we’re finished with it. Let’s
try closing our coroutine after getting back "Pumbaa".

println (" Create coroutine ")

val co = Coroutine <Int ,String >(my-process)

println ("\ nResume with 42")

val x = resume(co, 42)

println ("Got back x = %_" % [x])

println ("\ nResume with 43")

val y = resume(co, 43)

println ("Got back y = %_" % [y])

println ("\ nResume with 44")

val z = resume(co, 44)

println ("Got back z = %_" % [z])

close(co)

println ("\ nResume with 45")

val w = resume(co, 45)

println ("Got back w = %_" % [w])

Compiling and running the above prints out

Create coroutine

Resume with 42

Came in a = 42

Passing out Timon

Got back x = Timon

Resume with 43

Came in b = 43

Passing out and

Got back y = and

Resume with 44

Came in c = 44

Passing out Pumbaa

Got back z = Pumbaa

Resume with 45

FATAL ERROR: Cannot resume coroutine. Coroutine is already closed.

at core/core.stanza :984.13

at core/core.stanza :862.16

at core/core.stanza :897.40

at core/core.stanza :862.16

at test.stanza :40.8

Checking a Coroutine’s Status

There are two functions for checking on the status of a coroutine, active? and open?.

Calling active? on a coroutine will return true if the coroutine’s body is currently running, and false

otherwise. Only active coroutines can be suspended or broken from.

Calling open? on a coroutine will return true if the coroutine’s body is not currently running and open to
be resumed. Only open coroutines can be resumed.

CHAPTER 9. ADVANCED CONTROL FLOW 158

Nested Coroutines

A coroutine may also launch more coroutines. Notice that unlike yield, the calls to suspend, break, and
resume explicitly requires, as its first argument, the target coroutine. Being able to explicitly designate the
target of the suspend, break, and resume operations are key to allowing nested coroutines to work
properly.

Consider the following code, where the coroutine, co1, launches a second coroutine, co2, within its body.
Then within co2’s body, there are suspend and break calls on both co1 and co2. Pay attention to how
this interacts.

val co1 = Coroutine <False ,Int > $ fn (co1 , x0) :

val co2 = Coroutine <False ,False > $ fn (co2 , y0) :

for i in 0 to false do :

suspend(co1 , i)

if i == 5 :

println (" Breaking from coroutine 2!")

break(co2 , false)

resume(co2 , false)

-1

while open?(co1) :

println(resume(co1 , false))

Compiling and running the above prints out

0

1

2

3

4

5

Breaking from coroutine 2!

-1

The two nested coroutines are quite confusing. To get a better sense of what’s happening, let’s rewrite the
second coroutine using the special case label construct.

val co1 = Coroutine <False ,Int > $ fn (co1 , x0) :

label <False > break :

for i in 0 to false do :

suspend(co1 , i)

if i == 5 :

println (" Breaking from coroutine 2!")

break(false)

-1

while open?(co1) :

println(resume(co1 , false))

Compiling and running the above prints out the same message as before.

It is highly unlikely that you will feel the desire to directly launch new coroutines from within other
coroutines, as we did here. But this example shows that they nest appropriately and generally do the right
thing. Thus, for whatever abstractions you build on top of Stanza’s targetable coroutine system, you can
rest assured that they will recurse and compose correctly.

9.9 Example: Key Listener

The following example demonstrates using coroutines to easily implement a key listener that translates
individual key presses into events on strings.

Let us define a KeyListener type, and its fundamental operation.

CHAPTER 9. ADVANCED CONTROL FLOW 159

deftype KeyListener

defmulti key -pressed (c:Char) -> False

A KeyListener object listens to individual key presses from a keyboard and translates them into higher
level events. Here is the definition of the constructor function for a KeyListener.

defn KeyListener (entered: String -> False) -> KeyListener

KeyListener takes a callback function called entered that accepts String objects. Our KeyListener
translates key presses into calls to entered on space-separated words. It also supports deleting characters
with the backspace key, entering of double-quoted strings, and escaped double-quotes within a
double-quoted string. Here is specifically what it has to do.

1. A KeyListener has an internal buffer for storing characters. When keys corresponding to letters are
pressed, they are stored into the internal buffer.

2. When the backspace key is pressed, the last character is deleted from the internal buffer.

3. Once a full word is completed (indicated by the spacebar being pressed), the entered function should
be called with the contents of the internal buffer.

4. If the double quote key is pressed, then this indicates that a string is being started, and all subsequent
characters until the next double quote should be stored in the internal buffer. Upon completion of
the string, the entered function should be called with the entire contents of the internal buffer.

5. During entering of a string, if a backslash character followed by a double quote character is entered,
then the double quote character is stored in the internal buffer, and entering of the string continues.
If the backslash character is not followed by a double quote then both characters are ignored.

Coroutine Framework

Here is the basic framework that we will use to ease programming the KeyListener.

defn KeyListener (entered: String -> False) -> KeyListener :

val co = Coroutine <Char ,False > $ fn (co , c0) :

;Retrieve the next character

defn next -char () :

suspend(co, false)

...

new KeyListener :

defmethod key -pressed (this , c:Char) :

resume(co, c)

We immediately create a coroutine that accepts characters and sends back dummy values of type False.
Within the coroutine body, the helper function next-char requests the next character by suspending the
coroutine and returning the next character sent back into the coroutine. A new KeyListener object is
returned that calls resume on the coroutine whenever a key is pressed.

Buffer Managing Routines

The following definitions within the coroutine body help us manage the KeyListener’s internal buffer.

;Buffer commands

val buffer = Vector <Char >()

defn pop -char () :

if not empty?(buffer) :

pop(buffer)

defn add -char (c:Char) :

CHAPTER 9. ADVANCED CONTROL FLOW 160

add(buffer , c)

defn empty -buffer () :

entered(string -join(buffer))

clear(buffer)

The buffer is represented as a vector of characters. pop-char removes the last character in the buffer if
possible. add-char adds the given character to the end of the buffer. empty-buffer calls the entered

callback with the contents of the buffer, and then clears the buffer.

Dispatch Mode

The key press parser operates in a number of different modes. The default mode is the dispatch mode,
which determines which mode to next enter based on the previously pressed key.

;Dispatch mode

defn* parse (c:Char) :

if letter ?(c) :

parse -word(c)

else if c == ’\"’ :

parse -string(next -char ())

else :

parse(next -char ())

If a letter key was pressed, then we start parsing a word event. If the double-quote key is pressed, then we
start parsing a string event. Otherwise, the key press is ignored.

Word Mode

The word parsing mode accepts key presses until one word is completed.

;Word parsing mode

defn* parse -word (c:Char) :

if letter ?(c) :

add -char(c)

parse -word(next -char ())

else if c == ’\b’ :

pop -char()

parse -word(next -char ())

else if (c == ’ ’) or (c == ’\"’) :

empty -buffer ()

parse(c)

else :

parse -word(next -char ())

If the last key pressed was a letter, then that letter is added to the buffer. If the last key was a backspace,
then we delete a character from the buffer. If the last key was the spacebar or the double-quote key, then
the word is completed. We empty the buffer and then go back to the dispatch mode. All other keys are
ignored.

String Mode

The string parsing mode accepts key presses until another (un-escaped) double-quote key finishes the string.

;String parsing mode

defn* parse -string (c:Char) :

if c == ’\"’ :

empty -buffer ()

parse(next -char ())

else if c == ’\b’ :

CHAPTER 9. ADVANCED CONTROL FLOW 161

pop -char()

parse -string(next -char ())

else if c == ’\\’ :

if next -char() == ’\"’ : add -char(’\"’)

parse -string(next -char ())

else :

add -char(c)

parse -string(next -char ())

If the last key pressed was the double-quote key then the string is completed. We empty the buffer and
then go back to the dispatch mode. If the last key was a backspace, then we delete a character from the
buffer. If the last key was the backslash key, then we add a double-quote to the buffer if the following key
is a double-quote. Otherwise both keys are ignored. Finally, all other characters are added to the buffer.

Testing the KeyListener

Here is the entire KeyListener constructor function.

defn KeyListener (entered: String -> False) -> KeyListener :

val co = Coroutine <Char ,False > $ fn (co , c0) :

;Retrieve the next character

defn next -char () :

suspend(co, false)

;Buffer commands

val buffer = Vector <Char >()

defn pop -char () :

if not empty?(buffer) :

pop(buffer)

defn add -char (c:Char) :

add(buffer , c)

defn empty -buffer () :

entered(string -join(buffer))

clear(buffer)

;Dispatch mode

defn* parse (c:Char) :

if letter ?(c) :

parse -word(c)

else if c == ’\"’ :

parse -string(next -char ())

else :

parse(next -char ())

;Word parsing mode

defn* parse -word (c:Char) :

if letter ?(c) :

add -char(c)

parse -word(next -char ())

else if c == ’\b’ :

pop -char()

parse -word(next -char ())

else if (c == ’ ’) or (c == ’\"’) :

empty -buffer ()

parse(c)

else :

parse -word(next -char ())

;String parsing mode

defn* parse -string (c:Char) :

if c == ’\"’ :

empty -buffer ()

parse(next -char ())

else if c == ’\b’ :

pop -char()

CHAPTER 9. ADVANCED CONTROL FLOW 162

parse -string(next -char ())

else if c == ’\\’ :

if next -char() == ’\"’ : add -char(’\"’)

parse -string(next -char ())

else :

add -char(c)

parse -string(next -char ())

;Launch!

parse(c0)

new KeyListener :

defmethod key -pressed (this , c:Char) :

resume(co, c)

Let’s try it out on some simulated key presses.

defn keys -pressed (kl:KeyListener , cs:Seqable <Char >) :

do(key -pressed{kl, _}, cs)

defn main () :

val kl = KeyListener $ fn (s) :

println (" String entered: %_" % [s])

;Test backspace

keys -pressed(kl, "Timom\bn ")

;Test simple word

keys -pressed(kl, "and ")

;Test backspace against empty buffer

keys -pressed(kl, "P\b\b\b\bPumbaa ")

;Test unrecognized characters

keys -pressed(kl, " a#$!re")

;Test strings with escaped quotes

keys -pressed(kl, \<S>"\" good\" friends !!"<S>)

main()

Note that

\<S>literal !@#$%\|" characters <S>

is Stanza’s syntax for a literal un-escaped string. All characters between the starting <S> tag and the
ending <S> tag are part of the string. Any tag may be used in place of S.

Compiling and running the above prints out

String entered: Timon

String entered: and

String entered: Pumbaa

String entered: are

String entered: "good" friends !!

Our KeyListener calls the callback function at the correct times and with the correct input!

The coroutine mechanism allowed us to keep the code fairly straightforward and modular, even though the
logic behind the KeyListener itself is actually quite sophisticated. As an exercise, you may try to
implement an equivalent KeyListener function without using the coroutine mechanism to fully appreciate
how tedious and error-prone it is.

Chapter 10

Stanza’s Type System

Types are the basis for how Stanza decides whether expressions are legal or not, and how to select the
appropriate version of an overloaded function. This chapter will explain the different kinds of types in
Stanza, what values each type represents, and the subtype relation.

10.1 Kinds of Types

There are only a handful of basic kinds of types in Stanza. Here is a listing of them all.

1. Ground Types (e.g. Int, String, True)

2. Parametric Types (e.g. Array<Int>, List<String>)

3. Tuple Types (e.g. [Int], [Int, String], [Int, True, String])

4. Function Types (e.g. Int -> String, (Int, Int) -> Int)

5. Union Types (e.g. Int|String, True|False, Circle|Rectangle|Point)

6. Intersection Types (e.g. Collection<Int>&Lengthable)

7. Void Type (Void)

8. Unknown Type (?)

Each kind of type will be described in detail in this chapter. The only type that has not been introduced
yet is the void type. Most importantly, we’ll cover the subtyping rules for each kind of type, which are the
rules that Stanza uses to determine whether a program is legal.

10.2 The Subtype Relation

Stanza’s type system is built upon the subtyping relation. The most important operation on types is
determining whether one type is a subtype of another. We use the following notation

A <: B

to indicate that the type A is a subtype of the type B. Intuitively, what this means is that Stanza will allow
you to pass a value of type A to any place that is expecting a value of type B.

In previous chapters, we have demonstrated examples using the types

163

CHAPTER 10. STANZA’S TYPE SYSTEM 164

deftype Shape

deftype Circle <: Shape

According to these definitions, the Circle type is a subtype of Shape.

Circle <: Shape

This means that we may pass a Circle to any place that is expecting a Shape. For example, we can call
functions that accept Shape arguments with Circle objects. We can initialize values and variables of type
Shape with Circle objects. And we can return Circle objects from functions annotated to return Shape

objects.

Whether one type is a subtype of another is calculated from a set of subtyping rules. There is a small set
for handling each kind of type, and we’ll introduce them to you gradually.

10.3 Ground Types

Ground types are the most basic types in Stanza and are simply types that don’t take any type
parameters. The majority of types used in daily programming are simple ground types. Int, String, True,
False, and Char are a few examples of ground types that you’ve used.

Reflexivity Rule

There are two subtyping rules for ground types. The first is that a ground type is a subtype of itself.

T <: T

This rule is almost trivial. For example, here are some relations derivable from this rule.

Int <: Int

String <: String

True <: True

meaning that you can call a function that accepts String with an String object.

Parent Rule

Users may define their own ground types using deftype. For example, here is the type declaration for
Circle again.

deftype Circle <: Shape

The general form for deftype is

deftype T <: P

Here is the second subtyping rule for ground types. The type T is a subtype of X if it can be proven that its
parent type P is a subtype of X.

Assuming deftype T <: P

T <: X if P <: X

Thus we can derive

Circle <: Shape

from

CHAPTER 10. STANZA’S TYPE SYSTEM 165

Assuming deftype Circle <: Shape

Circle <: Shape because Shape <: Shape

This rule is what allows us to pass Circle objects to functions that accept Shape objects.

10.4 Parametric Types

Parametric types are types that take one or more type parameters. Array<Int>, List<String>, and our
own type, Stack<String>, are examples of parametric types.

Covariance Rule

First consider the case where a base type, A, takes only a single type parameter. This rule says that a
parametric type A<T> is a subtype of another parametric type A<S> if it can be proven that its type
parameter, T, is a subtype of the other’s type parameter, S.

A<T> <: A<S> if T <: S

In general, for arbitrary numbers of type parameters, the parametric type A<T1,T2, ..., Tn> is a subtype
of another parametric type A<S1, S2, ..., Sn> if its type parameters, T1, T2, ..., Tn are respectively
subtypes of the other’s type parameters, S1, S2, ..., Sn.

A<T1 , T2 , ..., Tn> <: A<S1 , S2, ..., Sn> if

T1 <: S1 and

T2 <: S2 and

...

Tn <: Sn

For example, we can derive

List <Circle > <: List <Shape >

from

List <Circle > <: List <Shape > because

Circle <: Shape

This rule is what allows us to pass a list of circles to a function expecting a list of shapes.

Parent Rule

Consider again the simple case where a base type, A, takes a single type parameter. Assume that A is
defined the following way.

deftype A<S> <: P

The parent rule for parametric types says that the parametric type A<T> is a subtype of X if it can be
proven that the result of replacing every occurrence of S in P with T is a subtype of X.

Assuming deftype A<S> <: P

A<T> <: X if P[S := T] <: X

where the notation P[S := T] stands for the result of replacing every occurrence of S in P with T.

Our parametric Stack type, for example, is declared

deftype Stack <T> <: Collection <T>

CHAPTER 10. STANZA’S TYPE SYSTEM 166

We can derive

Stack <Circle > <: Collection <Shape >

from

Stack <Circle > <: Collection <Shape > because

Collection <Circle > <: Collection <Shape > because

Circle <: Shape

Here is the general form of the rule for arbitrary numbers of type parameters.

Assuming deftype A<S1 , S2, ..., Sn> <: P

A<T1 , T2 , ..., Tn> <: X if

P[S1 := T1 , S2 := T2 , ..., Sn := Tn] <: X

It says that the parametric type A<T1, T2, ..., Tn> is a subtype of X if it can be proven that the result
of replacing every occurrence of S1, S2, ..., Sn in P respectively with T1, T2, ..., Tn is a subtype of X.

10.5 Tuple Types

Tuple types are used for representing the types of tuple objects. They’re special in that they take a
variable number of type parameters. Here is an example of a tuple type. The type

[Int , String]

represents a two-element tuple, where the first element is an Int and the second element is a String.

Covariance Rule

This rule says that the tuple type [T1, T2, ..., Tn] is a subtype of the tuple type [S1, S2, ..., Sn]

if the types of the elements T1, T2, ..., Tn are respectively subtypes of the types of the other’s elements S1,
S2, ..., Sn.

[T1 , T2, ..., Tn] <: [S1 , S2, ..., Sn] if

T1 <: S1 and

T2 <: S2 and

...

Tn <: Sn

For example, we can derive

[Circle , Rectangle] <: [Shape , Shape]

from

[Circle , Rectangle] <: [Shape , Shape] because

Circle <: Shape and

Rectangle <: Shape

Collapsed Tuple Rule

The type Tuple is used to represent a tuple of unknown arity. This rule allows us to pass tuples with
known arity to places expecting tuples with unknown arity.

[T1 , T2, ..., Tn] <: X if Tuple <T1|T2|...|Tn > <: X

CHAPTER 10. STANZA’S TYPE SYSTEM 167

It says that a tuple of known arity containing elements of type T1, T2, ..., Tn is a subtype of X if it can be
proven that the tuple of unknown arity Tuple<T1|T2|...|Tn> is a subtype of X.

The type Tuple<T> is defined to be a subtype of Collection<T> in the core library, so this rule is what
allows us to pass in tuples to functions that expect collections. For example, we can derive

[Int , Int , Int] <: Collection <Int >

from

[Int , Int , Int] <: Collection <Int > because

Tuple <Int|Int|Int > <: Collection <Int > because

Int|Int|Int <: Int

10.6 Function Types

Function types are used to represent the type of function objects. We’ve used them in the previous
chapters to write functions that accept other functions as arguments.

Let us first consider just functions that take a single argument.

T1 -> S1 <: T2 -> S2 if

S1 <: S2 and

T2 <: T1

The rule says that a function type T1 -> S1 is a subtype of another function type T2 -> S2 if it can be
proven that the return type of the first, S1, is a subtype of the return type of the second, S2, and if the
argument type of the second, T2, is a subtype of the argument type of the first, T1.

Covariance

This rule is a little confusing at first, so let’s go it carefully. First, the following relation

Int -> Circle <: Int -> Shape

can be derived from

Int -> Circle <: Int -> Shape because

Circle <: Shape and

Int <: Int

Suppose we are calling a function, f, that requires a function argument. What this rule means is that if f
requires its argument to return Shape objects, then we are allowed to pass it a function that returns
Circle objects. This makes sense as all circles are shapes. So assuming that f calls its argument function,
then whatever f will do with the resultant Shape objects, f can also do with Circle objects.

Contravariance

Next, the following relation

Shape -> Int <: Circle -> Int

can be derived from

Shape -> Int <: Circle -> Int because

Int <: Int and

Circle <: Shape

CHAPTER 10. STANZA’S TYPE SYSTEM 168

Suppose we are again calling a function, f, that requires a function argument. What this rule means is that
if f requires its argument to accept Circle objects, then we are allowed to pass it a function that accepts
Shape objects. This makes sense as all functions that can accept Shape objects, can also accept Circle
objects.

The general rule for function types results from the combination of functions being covariant in its return
type and contravariant in its argument types.

General Form

Here is the general form of the function subtyping rule for arbitrary numbers of arguments.

(T1 , T2, ..., Tn) -> R1 <: (S1 , S2 , ..., Sn) -> R2 if

R1 <: R2 and

S1 <: T1 and

S2 <: T2 and

...

Sn <: Tn

Thus a function type (T1, T2, ..., Tn) -> R1 is a subtype of another function type (S1, S2, ...,

Sn) -> R2 if it can be proven that the return type of the first, R1, is a subtype of the return type of the
second, R2, and the argument types of the second, S1, S2, ..., Sn, are respectively subtypes of the argument
types of the first, T1, T2, ..., Tn.

10.7 Union Types

Union types are used to represent a value who could either be of one type or another. The type
Int|String, for example, represents a value that could either be an Int or a String.

Expecting a Union Type

The following rule says that a type, X, is a subtype of a union type, A|B, if it can be proven that X is either
a subtype of A or a subtype of B.

X <: A|B if X <: A or X <: B

For example, we can derive

Int <: Int|String

from

Int <: Int|String because Int <: Int

This rule allows us to write functions that accept a variety of types, and be allowed to pass it a specific one.

Passing a Union Type

The following rule says that a union type, A|B, is a subtype of X, if it can be proven that both A is a
subtype of X and B is a subtype of X.

A|B <: X if A <: X and B <: X

For example, we can derive

Circle|Rectangle|Point <: Shape

CHAPTER 10. STANZA’S TYPE SYSTEM 169

from

Circle | (Rectangle|Point) <: Shape because

Circle <: Shape and

Rectangle|Point <: Shape because

Rectangle <: Shape and

Point <: Shape

This rule is what causes Stanza to error if you attempt to pass a Int|String object to a function that
requires an Int object.

10.8 Intersection Types

Intersection types are the dual of union types, and are used to indicate that a value is both of one type and
also of another. The type Collection<Int> & Lengthable, for example, represents an object that is
simultaneously both a collection of integers and also a Lengthable object.

Expecting an Intersection Type

The following rule says that a type, X, is a subtype of an intersection type, A&B, if it can be proven that X is
both a subtype of A and also a subtype of B.

X <: A&B if X <: A and X <: B

For example, we can derive

Stack <Int > <: Collection <Int > & Lengthable

from

Stack <Int > <: Collection <Int > & Lengthable because

Stack <Int > <: Collection <Int > and

Stack <Int > <: Lengthable

Passing an Intersection Type

The following rule says that an intersection type A&B is a subtype of X if it can be proven that either A is a
subtype of X or B is a subtype of X.

A&B <: X if A <: X or B <: X

For example, we can derive

Stack <Int > <: Lengthable

from

Stack <Int > <: Lengthable because

Collection <Int > & Lengthable <: Lengthable because

Lengthable <: Lengthable

CHAPTER 10. STANZA’S TYPE SYSTEM 170

10.9 The Void Type

The void type is a special type in Stanza that represents no value.

It is used, for example, as the return type of the fatal function, which simply prints an error message and
then immediately quits the program. fatal never returns, so it’s inappropriate to say that it returns any
type. throw is another function that returns Void, as it also never returns to its caller.

It is occasionally also used as a type parameter for collection types. For example, the following call

val xs = List()

creates an object of type List<Void> and assigns it to xs. Recall that calling head on a value of type
List<T> returns T. Similarly, calling head on a value of type List<Void> returns Void, indicating that
such a call would not return.

The only subtyping rule for Void is that it is a subtype of any type, T.

Void <: T

For programmers familiar with the void type in the C and Java programming language, note that this is
not the same concept. A C function that returns void still returns. It simply returns a meaningless value,
so you’re forbidden from using it for anything. In contrast, a Stanza function that returns Void does not
return.

10.10 The Unknown Type

The unknown type is a very important type and forms the basis of Stanza’s optional typing system. There
are two subtyping rules that defines its behaviour.

Expecting an Unknown Type

The following rule says that any type, T, is a subtype of ?.

T <: ?

When we declare a function that accepts arguments of type ?, it is this rule that allows us to pass any
object to the function.

Passing an Unknown Type

The following rule says that the unknown type, ?, is a subtype of any type, T.

? <: T

Given a value or argument declared with the ? type, it is this rule that allows us to pass this value
anywhere, regardless of what type is actually expected.

These two rules together allows Stanza to model the behaviour of dynamically-typed scripting languages in
a principled manner. The behaviour of the Python programming language, for example, can be mimicked
by declaring every argument and value as having the unknown type.

Chapter 11

Calling Foreign Functions

One of the most important features that a practical programming language must support is the ability to
call functions written in other languages. There are too many useful libraries written in the established
languages to consider rewriting them in another programming language. Stanza provides support for
calling any function using the calling convention for the C programming language. This means that you
can use any library written in C, or that provides a C interface, in Stanza. Since the dominant consumer
operating systems today use a C calling convention, this means that the vast majority of libraries can be
called from Stanza. This chapter will show you how.

11.1 Writing a C Function

Here is a fibonacci function written in C. Create a fibonacci.c file with the following contents.

#include <stdio.h>

#include <stdlib.h>

int generate_fib (int n) {

int a = 0;

int b = 1;

while(n > 0){

printf ("%d\n", b);

int c = a + b;

a = b;

b = c;

n = n - 1;

}

return 0;

}

int main (int nargs , char** argvs) {

generate_fib (10);

return 0;

}

Compile and run the above program by typing

cc fibonacci.c -o fibonacci

./ fibonacci

in the terminal. It should print out

1

1

2

171

CHAPTER 11. CALLING FOREIGN FUNCTIONS 172

3

5

8

13

21

34

55

In the next step, we will call the generate fib function from Stanza.

11.2 Calling our C Function

The first step is just to remove the main function in fibonacci.c since the program is now being
initialized and driven by Stanza.

Next create a file named fib.stanza with the following contents.

defpackage fib :

import core

import collections

extern generate_fib: int -> int

lostanza defn call -fib () -> ref <False > :

call -c generate_fib (10)

return false

println (" Calling fibonacci ")

call -fib()

println ("Done calling fibonacci ")

To compile both the fib.stanza and fibonacci.c files together, and run the program, type the following
into the terminal.

stanza fib.stanza -ccfiles fibonacci.c -o fib

./fib

It should print out

Calling fibonacci

1

1

2

3

5

8

13

21

34

55

Done calling fibonacci

Thus our Stanza program successfully calls and returns from the generate fib function written in C. Let’s
go through the program step by step.

Declaring an External Function

The line

extern generate_fib: int -> int

CHAPTER 11. CALLING FOREIGN FUNCTIONS 173

declares that there is a function defined externally called generate fib that takes a single integer
argument and returns a single integer argument.

Notice that int is not capitalized. This is important. int refers to the LoStanza integer type, and is
different from the Stanza type Int. We’ll go over what this means later.

Let us suppose that generate fib took two arguments instead of one. Make the following change to the
generate fib function, where it now accepts an argument, b0, to indicate the initial value of b.

int generate_fib (int b0, int n) {

int a = 0;

int b = b0;

...

}

Then the extern statement, and the call to generate fib would have to be updated accordingly.

extern generate_fib: (int , int) -> int

lostanza defn call -fib () -> ref <False > :

call -c generate_fib (2, 10)

return false

Compiling and running the new program now prints out

Calling fibonacci

2

2

4

6

10

16

26

42

68

110

Done calling fibonacci

Declaring a LoStanza Function

LoStanza is a small sub-language within Stanza that allows users to precisely specify data layouts and
perform low-level hardware operations. LoStanza can be used for writing high performance code,
communicating with external peripherals, and implementing system level functions. Stanza’s garbage
collector, for example, is written in LoStanza. In this chapter, we are using it to interface with externally
defined functions.

The line

lostanza defn call -fib () -> ref <False >

declares a LoStanza function called call-fib. Its return type, ref<False>, indicates that it returns a
reference to the Stanza type, False.

The line

call -c generate_fib (10)

calls the generate fib function with the argument 10. The call-c tells Stanza to call generate fib with
the C calling convention. By default, Stanza uses the Stanza calling convention to call other functions, and
if you forget the call-c it will seriously confuse generate fib and crash the program.

Finally, the line

return false

CHAPTER 11. CALLING FOREIGN FUNCTIONS 174

simply returns false to whomever called call-fib.

C Functions that Return void

When a C function is declared to return a value of type void, it means that the function is called for its
side effects only, and returns an arbitrary value. Let’s change generate fib to return void.

void generate_fib (int b0, int n) {

int a = 0;

int b = b0;

while(n > 0){

int c = a + b;

printf ("%d\n", c);

a = b;

b = c;

n = n - 1;

}

}

Stanza does not provide any explicit support for modeling arbitrary values, so the extern statement would
remain as

extern generate_fib: (int , int) -> int

and, as the programmer, you would have to remember (or document) that generate fib returns some
random integer that should not be used.

11.3 Calling LoStanza from Stanza

The arguments to generate fib are currently hardcoded into the call-fib function. Let’s change that to
allow both b0 and n to be passed as arguments to call-fib.

extern generate_fib: (int , int) -> int

lostanza defn call -fib (b0:int , n:int) -> ref <False > :

call -c generate_fib(b0, n)

return false

And our test code will now call call-fib with different arguments.

println (" Calling fibonacci (1, 10)")

call -fib(1, 10)

println (" Calling fibonacci (2, 10)")

call -fib(2, 10)

println ("Done calling fibonacci ")

However, attempting to compile the above gives us the following error.

LoStanza function call -fib of type (int , int) -> ref <False >

can only be referred to from LoStanza.

As mentioned, int is a LoStanza type, and you’re not allowed to call it directly from Stanza with Stanza
objects.

Convert Stanza Objects to LoStanza Values

The type Int is declared like this.

lostanza deftype Int :

value: int

CHAPTER 11. CALLING FOREIGN FUNCTIONS 175

We will explain what that means in more detail later, but for now, notice that it contains a field called
value that is of type int. Thus, we will modify our call-fib function to accept references to Int objects,
and then pass their value fields to generate fib.

lostanza defn call -fib (b0:ref <Int >, n:ref <Int >) -> ref <False > :

call -c generate_fib(b0.value , n.value)

return false

With this change, the program now compiles correctly, and prints out

Calling fibonacci (1, 10)

1

1

2

3

5

8

13

21

34

55

Calling fibonacci (2, 10)

2

2

4

6

10

16

26

42

68

110

Done calling fibonacci

A LoStanza function can be called from Stanza if and only if all of its argument types and return type are
ref<T>, indicating that it accepts and returns a reference to a Stanza object. LoStanza functions that can
be suitably called from Stanza are indistinguishable from regular Stanza functions. So in addition to being
called directly, they can also be passed as arguments, and stored in datastructures.

Convert LoStanza Values to Stanza Objects

Let us now change generate fib to return the n’th fibonacci number, instead of printing all of them.

int generate_fib (int b0, int n) {

int a = 0;

int b = b0;

while(n > 0){

int c = a + b;

a = b;

b = c;

n = n - 1;

}

return b;

}

We’ll also update our call-fib function to return the result of generate fib.

lostanza defn call -fib (b0:ref <Int >, n:ref <Int >) -> int :

val result = call -c generate_fib(b0.value , n.value)

return result

Here’s the updated test code that prints out the result of calling call-fib.

CHAPTER 11. CALLING FOREIGN FUNCTIONS 176

println (" fibonacci (1, 10) =")

println(call -fib(1, 10))

println (" fibonacci (2, 10) =")

println(call -fib(2, 10))

println ("Done calling fibonacci ")

However, attempting to compile the above gives us this familiar error.

LoStanza function call -fib of type (ref <Int >, ref <Int >) -> int

can only be referred to from LoStanza.

As mentioned already, a LoStanza function can be called from Stanza if and only if all of its argument
types and return type are ref<T>. We learned how to convert Stanza Int objects into LoStanza int values
in the previous section. Now we’ll learn how to convert LoStanza int values back into Stanza Int objects.

To create a Stanza Int object, we use the LoStanza new operator.

lostanza defn call -fib (b0:ref <Int >, n:ref <Int >) -> ref <Int > :

val result = call -c generate_fib(b0.value , n.value)

return new Int{result}

Our test code now compiles and runs, and prints out

fibonacci(1, 10) =

89

fibonacci(2, 10) =

178

Done calling fibonacci

Note that the LoStanza new operator is completely different than the Stanza new operator. It is best to
consider LoStanza as a completely separate language from Stanza. It has its own syntax, operators, and
behaviour. The thing that makes LoStanza unique is that there is a well-defined and flexible interface
between it and Stanza.

11.4 LoStanza Types

There are a handful of additional LoStanza types in addition to the int type that we used in the
declaration of the generate fib function.

Primitive Types

Here is a listing of the rest of the LoStanza primitive types, along with an example of their values.

val x:byte = 42Y

val x:int = 42

val x:long = 42L

val x:float = 42.0f

val x:double = 42.0

A byte is an 8-bit unsigned integer. An int is a 32-bit signed integer. A long is a 64-bit signed integer. A
float is a 32-bit single precision floating point number. And a double is a 64-bit double precision floating
point number.

The above primitive types have an associated Stanza type, each declared to contain a single value field
containing the LoStanza representation of its value. The associated Stanza types for byte, int, long,
float, and double, are Byte, Int, Long, Float, and Double, respectively. In addition to Byte, the Stanza
type Char is also declared to contain a single value field of type byte.

As an example, let us write a version of generate fib that works on double precision floating point
numbers.

CHAPTER 11. CALLING FOREIGN FUNCTIONS 177

double generate_fib_d (double b0 , int n) {

double a = 0.0;

double b = b0;

while(n > 0){

double c = a + b;

a = b;

b = c;

n = n - 1;

}

return b;

}

Here is the LoStanza code needed to be able to call generate fib d from Stanza.

extern generate_fib_d: (double , int) -> double

lostanza defn call -fib (b0:ref <Double >, n:ref <Int >) -> ref <Double > :

val result = call -c generate_fib_d(b0.value , n.value)

return new Double{result}

Now armed with double precision floating point, let’s calculate the 100’th fibonacci number.

println (" fibonacci (1.0, 100) = ")

println(call -fib(1.0, 100))

println (" fibonacci (2.0, 100) = ")

println(call -fib(2.0, 100))

println ("Done calling fibonacci ")

Compiling and running the above prints out

fibonacci (1.0, 100) =

573147844013817200640.000000000000000

fibonacci (2.0, 100) =

1146295688027634401280.000000000000000

Done calling fibonacci

Notice that the call-fib function is overloaded to accept both Int and Double arguments. LoStanza
functions have all the same features as Stanza functions, and this includes their ability to be overloaded.

Pointer Types

Pointers are represented in LoStanza with the ptr<t> type. The little t represents any LoStanza type. For
example, here is the type representing a pointer to an int,

ptr <int >

and here is the type representing a pointer to a pointer to an int,

ptr <ptr <int >>

The type

ptr <?>

represents a generic pointer to anything.

As an example of their use, let’s call the C malloc and free functions to allocate and delete space for
three integers.

extern malloc: long -> ptr <?>

extern free: ptr <?> -> int

lostanza defn try -pointers () -> ref <False > :

val ints:ptr <int > = call -c malloc (3 * sizeof(int))

call -c free(ints)

return false

CHAPTER 11. CALLING FOREIGN FUNCTIONS 178

The [] operator in LoStanza is the dereference operator and retrieves the value stored at the given pointer
address. Here is an example of storing and retrieving values into and from the ints pointer.

lostanza defn try -pointers () -> ref <False > :

val ints:ptr <int > = call -c malloc (3 * sizeof(int))

[ints] = 42

[ints + 4] = 43

[ints + 8] = 44

val x = [ints]

val y = [ints + 4]

val z = [ints + 8]

call -c free(ints)

return false

Programmers familiar with C should note that arithmetic on pointers do not automatically operate in
terms of the size of the pointer’s data type. To retrieve the i’th element from a pointer, assuming that its
elements are stored contiguously, we use the following syntax.

lostanza defn try -pointers () -> ref <False > :

val ints:ptr <int > = call -c malloc (3 * sizeof(int))

ints [0] = 42

ints [1] = 43

ints [2] = 44

val x = ints [0]

val y = ints [1]

val z = ints [2]

call -c free(ints)

return false

This is equivalent to the previous example.

Declaring a LoStanza Type

Consider the following definition of the C type Point3D and function get origin.

typedef struct {

float x;

float y;

float z;

} Point3D;

Point3D* get_origin () {

Point3D* p = (Point3D *) malloc(sizeof(Point3D));

p->x = 0.0f;

p->y = 0.0f;

p->z = 0.0f;

return p;

}

Point3D is a struct that contains three float fields, and get origin returns a pointer to a Point3D.

Here is how we would declare our own LoStanza type to mirror the C type definition.

lostanza deftype Point3D :

x: float

y: float

z: float

Here’s a function that demonstrates calling get origin and returning the x field in the returned point.

extern get_origin: () -> ptr <Point3D >

lostanza defn origin -x () -> ref <Float > :

val p = call -c get_origin ()

return new Float{p.x}

CHAPTER 11. CALLING FOREIGN FUNCTIONS 179

Here’s some code to test the origin-x function.

println ("The x coordinate of the origin is %_." % [origin -x()])

which prints out

The x coordinate of the origin is 0.000000.

Reference Types

A reference to a Stanza object is represented with the ref<T> type. The big T represents any Stanza type.
We’ve already used the ref<Int>, and ref<Float> types in our examples.

Our previous function origin-x returned the x coordinate of the origin. But we would really like to just
return the entire point to Stanza. Similar to how we converted int values to Int objects, this is done using
the new operator.

lostanza defn origin () -> ref <Point3D > :

val p = call -c get_origin ()

return new Point3D{p.x, p.y, p.z}

And here are the LoStanza getter functions for a Point3D that allows Stanza to retrieve the coordinates
within it.

lostanza defn x (p:ref <Point3D >) -> ref <Float > :

return new Float{p.x}

lostanza defn y (p:ref <Point3D >) -> ref <Float > :

return new Float{p.y}

lostanza defn z (p:ref <Point3D >) -> ref <Float > :

return new Float{p.z}

Here’s some code to test our new origin function.

val p = origin ()

println ("The x coordinate of the origin is %_." % [x(p)])

println ("The y coordinate of the origin is %_." % [y(p)])

println ("The z coordinate of the origin is %_." % [z(p)])

Compiling and running the above code prints out

The x coordinate of the origin is 0.000000.

The y coordinate of the origin is 0.000000.

The z coordinate of the origin is 0.000000.

As one last example, let’s write, in LoStanza, a constructor function for Point3D objects that can be called
from Stanza.

lostanza defn Point3D (x:ref <Float >, y:ref <Float >, z:ref <Float >) -> ref <Point3D > :

return new Point3D{x.value , y.value , z.value}

Here’s some test code for trying out our constructor function.

val p2 = Point3D (1.0f, 3.4f, 4.2f)

println ("The x coordinate of p2 is %_." % [x(p2)])

println ("The y coordinate of p2 is %_." % [y(p2)])

println ("The z coordinate of p2 is %_." % [z(p2)])

which, when compiled and ran, prints out

The x coordinate of p2 is 1.000000.

The y coordinate of p2 is 3.400000.

The z coordinate of p2 is 4.200000.

With these definitions, Point3D becomes a type that we can freely manipulate from Stanza. We can create
Point3D objects, and we can retrieve its fields.

CHAPTER 11. CALLING FOREIGN FUNCTIONS 180

Literal Strings

A literal string in LoStanza has type ptr<byte> and refers to a pointer to a memory location where the
ascii byte representation of its characters are stored.

For example, the following snippet will retrieve the ascii byte value of the character ’o’ and store it in the
value c.

val str:ptr <byte > = "Hello"

val c:byte = str[4]

The characters are also stored with a terminating zero byte after all the characters. This allows the literal
strings to be suitably used with external libraries expecting C language strings.

External Unknown Arity Functions

Neither LoStanza nor Stanza supports the definition of functions that take an unknown number of
arguments. But there are external libraries containing such functions. The C printf function is the most
famous one.

The printf function would be declared like this.

extern printf: (ptr <byte >, ? ...) -> int

Here is an example of calling it from a function called test.

lostanza defn test () -> ref <False > :

call -c printf ("The friendship between %s and %s is valued at over %d.\n",

"Timon", "Pumbaa", 9000)

return false

test()

Compiling and running the above prints out

The friendship between Timon and Pumbaa is valued at over 9000.

11.5 External Global Variables

Let us suppose that generate fib was written differently. Suppose that it does not accept any arguments,
and also returns void. Instead it will retrieve its argument from a global variable named FIB PARAM, and
store the result in FIB PARAM when finished.

int FIB_PARAM;

void generate_fib (void) {

int a = 0;

int b = 1;

while(FIB_PARAM > 0){

int c = a + b;

a = b;

b = c;

FIB_PARAM = FIB_PARAM - 1;

}

FIB_PARAM = b;

}

To call the new generate fib, our LoStanza call-fib function would need to be able to read and write to
the FIB PARAM variable. Here’s how to do that.

CHAPTER 11. CALLING FOREIGN FUNCTIONS 181

extern FIB_PARAM : int

extern generate_fib : () -> int

lostanza defn call -fib (n:ref <Int >) -> ref <Int > :

FIB_PARAM = n.value

call -c generate_fib ()

return new Int{FIB_PARAM}

println ("fib (10) = %_" % [call -fib (10)])

Compiling and running the above prints out

fib (10) = 89

11.6 Function Pointers

Certain C libraries tend to make heavy use of function pointers for implementing callbacks or
parameterized behaviour. Let us suppose there is a C function called choose greeting that when given an
integer argument returns one of several possible greeting functions to return. These greeting functions then
accept a C string and print out an appropriate message.

void standard_greeting (char* name) {

printf ("Hello %s!\n", name);

}

void chill_greeting (char* name) {

printf("’Sup %s.\n", name);

}

void excited_greeting (char* name) {

printf ("%c", name [0]);

for(int i=0; i<5; i++)

printf ("%c", name [1]);

printf ("%s! Heyyyy !\n", name +2);

}

typedef void (* Greeting)(char* name);

Greeting choose_greeting (int option) {

switch(option){

case 1: return &chill_greeting;

case 2: return &excited_greeting;

default: return &standard_greeting;

}

}

The extern declaration for choose greeting would look like this.

extern choose_greeting: int -> ptr <(ptr <byte > -> int)>

Here’s how to decipher that piece by piece. The returned greeting functions all have type

ptr <byte > -> int

The choose greeting function returns a pointer to a greeting function. So the return type of
choose greeting is

ptr <(ptr <byte > -> int)>

And choose greeting, itself, requires an integer argument. Thus the full type for choose greeting is

int -> ptr <(ptr <byte > -> int)>

CHAPTER 11. CALLING FOREIGN FUNCTIONS 182

Here is the LoStanza greet function which takes an integer argument called option and greets Patrick
appropriately.

lostanza defn greet (option:ref <Int >) -> ref <False > :

val greet = call -c choose_greeting(option.value)

call -c [greet](" Patrick ")

return false

Notice that the value greet has type ptr<(ptr<byte> -> int)>, and thus it needs to be first dereferenced
before it can be called.

call -c [greet](" Patrick ")

Let’s try it out!

println (" Option 0")

greet (0)

println ("\ nOption 1")

greet (1)

println ("\ nOption 2")

greet (2)

Compiling and running the above prints out

Option 0

Hello Patrick!

Option 1

’Sup Patrick.

Option 2

Paaaaatrick! Heyyyy!

11.7 The Address Operator

The greet function in the previous example accepts an integer argument to select the type of greeting, but
it only ever greets Patrick. Let’s generalize greet to accept whom to greet as well.

We want greet to be callable from Stanza, so the name will be passed in as a String object.

lostanza defn greet (option:ref <Int >, name:ref <String >) -> ref <False > :

...

But the greet function requires a ptr<byte> as its argument, and name is a ref<String>. How do we get
access to a pointer to the string’s characters?

The String type is declared in the core library as

lostanza deftype String :

length: long

hash: int

chars: byte ...

The ellipsis following the byte indicates that the String object ends with a variable number of trailing
byte values. We need a pointer to those values to call greet with. To do that we will use the addr

operator, which will return the pointer address of a location.

Let’s now write our greet function with the addr operator.

lostanza defn greet (option:ref <Int >, name:ref <String >) -> ref <False > :

val greet = call -c choose_greeting(option.value)

call -c [greet](addr(name.chars))

return false

CHAPTER 11. CALLING FOREIGN FUNCTIONS 183

And update our test code to pass in a different name for each type of greeting.

println (" Option 0")

greet(0, "Emmy")

println ("\ nOption 1")

greet(1, "Patrick ")

println ("\ nOption 2")

greet(2, "Luca")

Attempting to compile the above, however, gives us this error.

Cannot retrieve address of unstable location using addr operator.

What does that mean?

Stable and Unstable Locations

Underneath the hood, Stanza uses a precise relocating garbage collector. What this means is that objects
are constantly being shuffled around in memory during the garbage collection process. An unstable
location is a location whose address is not fixed, such as a field in a Stanza object. In contrast, a stable
location is one whose address is fixed, such as a piece of memory allocated using malloc.

The error above is saying that we cannot use the addr operator to retrieve the address of name.chars,
which is an unstable location. name is a Stanza string and will be relocated whenever the garbage collector
runs, and so the address of name.chars is constantly changing.

However, we are planning to pass the address of name.chars to C and then immediately start executing C
code. Additionally, the C function is guaranteed not to hang onto the pointer after it returns. Thus, in this
particular case, we know that Stanza’s garbage collector will never have a chance to run, and it is safe to
retrieve the pointer of name.chars.

To force Stanza to give you the address of an unstable location, Stanza provides you the addr! operator.
So let’s update our greet function by using the addr! operator this time,

lostanza defn greet (option:ref <Int >, name:ref <String >) -> ref <False > :

val greet = call -c choose_greeting(option.value)

call -c [greet](addr!(name.chars))

return false

and try compiling and running the program again. The program now prints out

Option 0

Hello Emmy!

Option 1

’Sup Patrick.

Option 2

Luuuuuca! Heyyyy!

You should stick to using the addr operator whenever you can, and use the addr! operator only when
you’re very sure that the object won’t be relocated while you’re using the pointer.

11.8 Calling LoStanza from C

So far we’ve only considered calling C functions from Stanza, but what if you wanted to call a Stanza
function from C? Stanza supports both directions of calling and this section will explain how.

CHAPTER 11. CALLING FOREIGN FUNCTIONS 184

Let us reconsider the generate fib function again. This time, we will have generate fib call a Stanza
function for each number that is generated. Here is the code for generate fib.

#include <stdio.h>

#include <stdlib.h>

void number_generated (int x);

void generate_fib (int n) {

int a = 0;

int b = 1;

while(n > 0){

number_generated(b);

int c = a + b;

a = b;

b = c;

n = n - 1;

}

}

Notice that we assume the existence of a function called number generated that we can call from C.

C will call number generated using the C calling convention, so we need to be able to define a LoStanza
function that is expecting to be called with the C calling convention. The extern keyword will allow us to
do that. Our number generated function will push the generated number to a global vector called
FIB NUMBERS.

val FIB_NUMBERS = Vector <Int >()

extern defn number_generated (n:int) -> int :

add(FIB_NUMBERS , new Int{n})

return 0

The implementation of the call-fib function remains as it was before.

extern generate_fib: int -> int

lostanza defn call -fib (n:ref <Int >) -> ref <False > :

call -c generate_fib(n.value)

return false

Let’s try it out then! Here’s our test code.

call -fib (20)

println (" Generated Numbers: %_" % [FIB_NUMBERS])

Compiling and running the above prints out

Generated Numbers: [1 1 2 3 5 8 13 21 34 55 89 144 233

377 610 987 1597 2584 4181 6765]

11.9 Passing Callbacks to C

In the last section, we showed you how to write a LoStanza function that can be called with C. However, C
libraries are not typically architected to directly call a named user function. Instead, the user will pass the
library a pointer to a callback function that is then later called by the library.

Let’s change our generate fib function so that it no longer directly calls the number generated function.
It will accept instead, as an argument, a pointer to a callback function which it will call.

void generate_fib (int n, void (* number_generated)(int x)) {

int a = 0;

int b = 1;

CHAPTER 11. CALLING FOREIGN FUNCTIONS 185

while(n > 0){

number_generated(b);

int c = a + b;

a = b;

b = c;

n = n - 1;

}

}

We shall keep the LoStanza definition of number generated the same, but we will need to change the
declaration of the generate fib function, and also pass a pointer to number generated to the call to
generate fib.

extern generate_fib: (int , ptr <(int -> int)>) -> int

lostanza defn call -fib (n:ref <Int >) -> ref <False > :

call -c generate_fib(n.value , addr(number_generated))

return false

Notice the use of the standard addr operator for retrieving the address of the number generated function.

Compiling and running the above prints out

Generated Numbers: [1 1 2 3 5 8 13 21 34 55 89 144 233

377 610 987 1597 2584 4181 6765]

Let’s take this time to review everything that this example demonstrates.

1. Stanza is calling call-fib, which is a function written in LoStanza.

2. call-fib is calling generate fib, which is a function written in C.

3. generate fib is passed a pointer to the number generated function which is written in LoStanza.

4. generate fib runs and calls number generated multiple times.

5. Each time number generated is called, it creates a Stanza Int object from the argument passed to it
by generate fib, and calls the Stanza function add to push it onto a vector.

This will likely be the most complicated usage of Stanza’s foreign function interface you will come across,
but it’s nice to know that the flexibility is there when you need it.

Chapter 12

Appendix

Stanza has a number of convenience constructs that make your life easier, but they are not necessary for
day to day programming. You may skim through this appendix and learn about these constructs as their
need arises.

12.1 Stanza Compiler Options

.stanza Configuration File

Stanza’s platform and compiler settings are stored in the .stanza file that was created when you installed
Stanza with stanza install. When you run Stanza it will first look for an appropriate .stanza file. Here
are the places that Stanza searches in, in order, for the .stanza file.

1. Stanza first looks in the current working directory.

2. If the STANZA CONFIG environment variable is set, then Stanza looks in that directory.

3. If the HOME environment variable is set, then Stanza looks in that directory.

Basic Compilation

To compile myfile.stanza and generate the binary myprogram use the following command.

stanza myfile.stanza -o myprogram

Optimization

To compile with optimizations, use the -optimize flag.

stanza myfile.stanza -o myprogram -optimize

Be warned that Stanza’s optimizer is only designed to handle correct programs. A correct program is
defined to be a program that successfully runs to completion without ever failing with a call to fatal. If
an unoptimized program runs to completion and generates a result, then the optimized program is
guaranteed to run to completion and generate the same result. However, if the unoptimized program fails,
then the behaviour of the optimized program is undefined.

186

CHAPTER 12. APPENDIX 187

Generating Assembly Files

By default, Stanza generates a temporary .asm file containing the generated assembly instructions and
then links it with GCC. To use a specific name for the .asm file use the -s flag.

stanza myfile.stanza -s myprogram.s -o myprogram

The above command will generate the assembly file myprogram.s and link it to produce the binary file
myprogram.

For expert users that only want the assembly file, the -o flag may be omitted. The following command
only generates the assembly file myprograms.s.

stanza myfile.stanza -s myprogram.s

Pkg Files

Stanza’s separate compilation system allows for packages to be compiled into .pkg files. The following
command compiles each package in myfile.stanza to a separate .pkg file.

stanza myfile.stanza -pkg

By default, the resultant .pkg files are generated in the current working directory. To specify the folder
into which they should be generated, provide the path after the -pkg flag. The following command puts
the resultant .pkg files in the mypkgs folder.

stanza myfile.stanza -pkg mypkgs

Note that the current compiler requires for source files containing mutually dependent packages to be
compiled together. For example, if myfile1.stanza contains

defpackage mypackage1 :

import mypackage2

...

and myfile2.stanza contains

defpackage mypackage2 :

import mypackage1

...

then myfile1.stanza and myfile2.stanza must be compiled together with the following command.

stanza myfile1.stanza myfile2.stanza -pkg

Automatic Pkg Loading

When you compile a program, Stanza automatically looks for the .pkg files containing the definitions of
the packages that you import. Here is the order in which Stanza looks for appropriate .pkg files.

1. If you’ve provided a path using the -pkg-path flag, then Stanza will first look there for .pkg files. For
example, the following command compiles myfile.stanza using the .pkg files in the mypkgs folder.

stanza myfile.stanza -pkg -path mypkgs

2. If the -pkg-path flag is not provided, then Stanza will first look in the current working directory for
.pkg files.

CHAPTER 12. APPENDIX 188

3. If the -optimize flag is provided, then Stanza will look in the directories specified by the
fast-pkg-dirs option in your .stanza configuration file. To add additional directories to the pkg
path, add the following to your .stanza file.

fast -pkg -dirs = ("/ path/to/myfastpkgs1" "/path/to/myfastpkgs2 ")

4. If the -optimize flag is provided, then Stanza will look in the fast-pkgs folder in your Stanza
installation directory.

5. Stanza will then look in the directories specified by the pkg-dirs option in your .stanza
configuration file. To add additional directories to the pkg path, add the following to your .stanza
file.

pkg -dirs = ("/ path/to/mypkgs1" "/path/to/mypkgs2 ")

6. Stanza will then look in the pkgs folder in your Stanza installation directory.

C Compiler Options

Stanza provides the -ccfiles flag to include additional files to the call to the C compiler. The following
command compiles the myfile.stanza program and links it against the functions contained in
supportfunctions.c to produce the myprogram executable.

stanza myfile.stanza -ccfiles supportfunctions.c -o myprogram

You may also use the -ccflags flag to include additional flags to the C compiler. The following command
compiles the myfile.stanza program and calls the C compiler with the additional -lmylib flag to
produce the myprogram executable.

stanza myfile.stanza -ccflags -lmylib -o myprogram

Note that to provide multiple flags to the C compiler, the flags must be quoted.

stanza myfile.stanza -ccflags -lmylib1 -lmylib2 -o myprogram

Target Platform Settings

By default, Stanza generates code appropriate for the platform that you specified in the call to stanza

install. If you wish to generate code appropriate for a different platform, then you can override the
platform using the -platform flag.

The following generates the assembly file myprogram.s appropriate for the Windows platform.

stanza myfile.stanza -s myprogram.s -platform windows

12.2 The When Expression

The when expression provides a convenient syntax for very short if expressions. The following

val name =

if meerkat? : "Timon"

else : "Pumbaa"

assigns the string ”Timon” to name if meerkat? is true, otherwise it assigns ”Pumbaa”. It can be
equivalently written as

val name = "Timon" when meerkat? else "Pumbaa"

CHAPTER 12. APPENDIX 189

In general, the form

a when c else b

is equivalent to the if expression

if c : a

else : b

Optional Else Branch

You may also leave off the else branch, in which case

a when c

is equivalent to the if expression

if c : a

This form is often convenient if you want to call a function only when some condition is true.

press(button) when action == "press"

The when expression is another example of a convenience construct implemented as a macro.

12.3 The Where Expression

The where expression provides a convenient syntax for pulling out short definitions from complicated
expressions. The following code

println ("They call me Mr. %_" % [name]) where :

val name = "Pig!" when angry? else "Pumbaa ."

first defines name, and then prints the message. It is equivalent to

let :

val name = "Pig!" when angry? else "Pumbaa ."

println ("They call me Mr. %_" % [name])

The where expression is also implemented as a macro. As you can see, Stanza’s core library makes heavy
use of macros.

12.4 The Switch Expression

The switch expression provides a convenient syntax for choosing amongst a number of nested if branches.
Here is an example of evaluating the first branch for which empty? evaluates to true.

switch empty? :

a : println ("List a is empty .")

b : println ("List b is empty .")

head(c) : println ("The head of list c is empty .")

else : println (" Nothing is empty .")

The above is equivalent to these nested if expressions.

CHAPTER 12. APPENDIX 190

if empty?(a) :

println ("List a is empty .")

else if empty?(b) :

println ("List b is empty .")

else if empty?(head(c)) :

println ("The head of list c is empty .")

else :

println (" Nothing is empty .")

If the else branch is omitted then a default else branch is provided that prints an error and causes the
program to fail.

The switch construct is commonly used with an anonymous function as its predicate. Here is an example
of using switch to evaluate different branches depending on the value of x.

switch {x == _} :

0 : println (" Sunday ")

1 : println (" Monday ")

2 : println (" Tuesday ")

3 : println (" Wednesday ")

4 : println (" Thursday ")

5 : println (" Friday ")

6 : println (" Saturday ")

else : println (" Elseday ")

12.5 More on Visibility

Package Qualified Identifiers

Suppose our main program makes use of the following definitions from an animals package.

public defstruct Dog

public defstruct Cat

public name (x:Dog|Cat) -> String

public sound (x:Dog|Cat) -> String

Package-qualified identifiers allow us to reference those definitions without having to import the animals

package. Here is a main function written using package-qualified identifiers and without importing animals.

defpackage animal -main :

import core

defn main () :

val d = animals/Dog(" Shadow ")

val c = animals/Cat("Sassy ")

println ("My dog %_ goes %_!" % [animals/name(d), animals/sound(d)])

println ("My cat %_ goes %_!" % [animals/name(c), animals/sound(c)])

In general, a package qualified identifier is any identifier that contains the ’/’ character. The characters
after the last occurrence of the ’/’ form the name of the definition being referenced. The characters before
the last occurrence form the name of the package containing the definition being referenced. For example,
the following identifier

stanza/compiler/type/FunctionType

refers to the FunctionType definition in the stanza/compiler/type package.

Package-qualified identifiers are mostly used by macro writers. Macros should expand into references to
package-qualified identifiers to prevent users from having to explicitly import the runtime libraries that the
macros depend upon.

CHAPTER 12. APPENDIX 191

Top Level Identifiers

Identifiers whose only occurrence of the ’/’ character is at the beginning of the identifier are called
top-level identifiers. For example, /sound and /name are top-level identifiers.

Top level identifiers are used to refer to a definition that is visible from the top most scope in the current
package. It is used to refer to a top-level definition when its actual name has been shadowed by a local
definition.

For example, the following

defn main () :

val s = "Hello"

val length = 42

println(length(s))

fails to compile with the error

Value length of type Int cannot be called as a function.

This is because length refers to the value 42, not the function that returns the length of a string. We can
get around this either by renaming the length value to something else, or by using a top-level identifier to
refer to the length function.

defn main () :

val s = "Hello"

val length = 42

println (/ length(s))

Protected Visibility

In addition to public and private visibilities, Stanza supports one last visibility setting: the protected
visibility. A definition with protected visibility can be referred to from other packages, but they can only
be referred to using package-qualified identifiers.

Suppose we have an animals package containing the following definitions.

public defstruct Dog

public defstruct Cat

public name (x:Dog|Cat) -> String

protected sound (x:Dog|Cat) -> String

And we will import the animals package into our animals-main package.

defpackage animals -main :

import animals

defn main () :

val d = Dog(" Shadow ")

val c = Cat(" Sassy")

name(d)

animals/sound(c)

All of the public definitions in animals can be directly referred to in animals-main after they have been
imported, but the protected function sound must be package-qualified.

Protected definitions are most often used by macro writers. Often, a macro simply expands into a
decorated call to a helper function. We want to encourage users to use the macro form, and not call the
helper function directly. By annotating the macro with the protected visibility we make it unlikely for
users to accidentally call the helper function.

	Getting Started
	Get Stanza
	Write a Program

	The Very Basics
	Project Framework
	Printing Simple Messages
	Lexical Structure
	Comments
	Operators
	Values
	Variables
	Functions
	Comparisons
	If Expressions
	Expression Sequences
	Structure Through Indentation
	While Loops
	For "Loops"
	Labeled Scopes
	Scopes and the Let Expression
	Arrays
	Tuples
	Basic Types
	Structs
	Exercises

	The Less Basic
	More about Structs
	The Match Expression
	The Is Expression
	Casts
	Deep Casts
	Operations on Strings
	Operations on Tuples
	Packages
	Function Overloading
	Operator Mapping
	Vectors
	HashTables
	KeyValue Pairs
	For Loops over Sequences
	Extended Example: Complex Number Package

	Architecting Programs
	A Shape Library
	Creating a New Shape
	Subtyping
	Multis and Methods
	Default Methods
	Underneath the Hood
	Intersection Types
	The Flexibility of Functions
	Fundamental and Derived Operations
	Multiple Dispatch
	Ambiguous Methods
	Revisiting Print
	The New Expression
	Constructor Functions
	Revisiting Defstruct

	Programming with First-Class Functions
	Nested Functions
	Functions as Arguments
	Functions as Return Values
	Core Library Functions
	Anonymous Functions
	The For Construct
	Stanza Idioms
	Tail Calls
	Revisiting While

	Programming with Sequences
	Fundamental Operations
	Writing a Sequence Function
	Lazy Sequences
	Using The Sequence Library
	Collection versus Seqable
	Revisiting Stack

	Programming with Immutable Datastructures
	Lists
	Example: Coin Counting
	List Library
	Example: More Coin Counting
	Extended Example: Automatic Differentiation

	Parametric Polymorphism
	The Need for Polymorphism
	Explicit Type Arguments
	Captured Type Arguments
	Parametric Types
	Match Expressions and Type Erasure
	Revisiting Stack

	Advanced Control Flow
	First Class Labeled Scopes
	Dynamic Wind
	Dynamically Scoped Variables
	Attempts and Failures
	Example: S-Expression Parser
	Exception Handling
	Generators
	Coroutines
	Example: Key Listener

	Stanza's Type System
	Kinds of Types
	The Subtype Relation
	Ground Types
	Parametric Types
	Tuple Types
	Function Types
	Union Types
	Intersection Types
	The Void Type
	The Unknown Type

	Calling Foreign Functions
	Writing a C Function
	Calling our C Function
	Calling LoStanza from Stanza
	LoStanza Types
	External Global Variables
	Function Pointers
	The Address Operator
	Calling LoStanza from C
	Passing Callbacks to C

	Appendix
	Stanza Compiler Options
	The When Expression
	The Where Expression
	The Switch Expression
	More on Visibility

