
Advanced Stanza
Features

Patrick S. Li

Stanza’s Technical Pillars

❖ Stanza is built up from five interacting subsystems:

❖ Optional Typing

❖ Multimethod Objects

❖ Targetable Coroutines

❖ Programmatic Macros

❖ LoStanza System Language

Stanza’s Technical Pillars

❖ Stanza is built up from five interacting subsystems:

❖ Optional Typing

❖ Multimethod Objects

❖ Targetable Coroutines

❖ Programmatic Macros

❖ LoStanza System Language

You use these all the time.

Targetable Coroutines

❖ A Coroutine is like a subroutine:

❖ Instead of return, you have yield.

❖ yield does the same thing as return the first time it is
called, but:

❖ Remembers where it first executed.

❖ Resumes from where it left off when called again.

Lazy Generation
defn count-up-and-down (n:Int) :
 while true :
 for i in 0 to n do :
 println(i)
 for i in n to 0 by -1 do :
 println(i)

count-up-and-down(4)

0
1
2
3
4
3
2
1
0
1
2
3
4
3
2
1
0
...

Lazy Generation
defn count-up-and-down (n:Int) :
 while true :
 for i in 0 to n do :
 println(“Counting up”)
 println(i)
 for i in n to 0 by -1 do :
 println(“Counting down”)
 println(i)

count-up-and-down(4)

Counting up
0
Counting up
1
Counting up
2
Counting up
3
Counting down
4
Counting down
3
Counting down
2
Counting down
1
Counting up
0
...

Lazy Generation
defn count-up-and-down (n:Int) :
 generate<Int> :
 while true :
 for i in 0 through n do :
 println("Counting up")
 yield(i)
 for i in n through 0 by -1 do :
 println("Counting down")
 yield(i)

val xs = count-up-and-down(4)
println("First one")
println(next(xs))

First one
Counting up
0

Lazy Flattening
defn flatten (x) :
 generate :
 let loop (x = x) :
 match(x:List) : do(loop, x)
 else : yield(x)

val xs = flatten(`(0 (1 (2 3)) ((4) 5)))
do(println, take-n(3, xs)) 0

1
2

Lazy Flattening
defn flatten (x) :
 generate :
 let loop (x = x) :
 match(x:List) : do(loop, x)
 else : yield(x)

val xs = flatten(`(0 (1 (2 3)) ((4) 5)))
val ys = flatten(`((0 1) 2 ((3)) 4 (5)))
println(all?(equal?,
 flatten(xs),
 flatten(ys)))

true

Lazy Flattening
defn flatten (x) :
 generate :
 let loop (x = x) :
 match(x:List) : do(loop, x)
 else : yield(x)

val xs = flatten(`(0 (1 (8 3)) ((4) 5)))
val ys = flatten(`((0 1) 2 ((3)) 4 (5)))
println(all?(equal?,
 flatten(xs),
 flatten(ys)))

false

Fundamentals of Animation
... state ...

defn tick () :
 ... update state ...

defn draw () :
 ... draw state ...

while true :
 tick()
 draw()

Fundamentals of Animation
var x = 0
var y = 0

defn tick () :
 x = x + 1

defn draw () :
 draw-box(x, y)

while true :
 tick()
 draw()

Fundamentals of Animation
var x = 0
var y = 0
var action = "UP"

defn tick () :
 if action == "UP" :
 y = y + 1
 if y > 5 :
 action = "RIGHT"
 else if action == "RIGHT" :
 x = x + 1
 if x > 10 :
 action = "DOWN"
 else if action == "DOWN" :
 y = y - 1
 if y <= 0 :
 action = "STOP"

Fundamentals of Animation
var x = 0
var y = 0

defn ticking () :
 generate<False> :
 while y <= 5 :
 y = y + 1
 yield(false)
 while x <= 10 :
 x = x + 1
 yield(false)
 while y >= 0 :
 y = y - 1
 yield(false)

val ticks = ticking()
while not empty?(ticks) :
 next(ticks)
 draw()

Fundamentals of Animation
var x = 0
var y = 0

defn ticking () :
 generate<False> :
 defn slide (dx, dy, n) :
 for i in 0 to n do :
 x = x + dx
 y = y + dy
 yield(false)

 slide(0, 1, 5)
 slide(1, 0, 10)
 slide(0, -1, 5)

val ticks = ticking()
while not empty?(ticks) :
 next(ticks)
 draw()

Insertion Sort
defn insertion-sort (xs) :
 val N = length(xs)
 for i in 1 to N do :
 val insert = xs[i]
 val j = find!({xs[_] > insert}, 0 to i)
 for k in i to j by -1 do :
 xs[k] = xs[k - 1]
 xs[j] = insert
 xs

val xs = to-array<Int>([1 5 3 2 7])
insertion-sort(xs)
println(xs)

[1 2 3 5 7]

Insertion Sort
defn insertion-sort (xs) :
 val N = length(xs)
 for i in 1 to N do :
 val insert = xs[i]
 val j = find!({xs[_] > insert}, 0 to i)
 for k in i to j by -1 do :
 xs[k] = xs[k - 1]
 xs[j] = insert
 xs

animate(insertion-sort)

Selection Sort
defn selection-sort (xs) :
 val N = length(xs)
 for s in 0 to (N - 1) do :
 ;Find minimum
 var min-i = s
 var min-v = xs[s]
 for i in (s + 1) to N do :
 if xs[i] < min-v :
 min-i = i
 min-v = xs[i]

 ;Swap
 if min-i != s :
 xs[min-i] = xs[s]
 xs[s] = min-v

animate(selection-sort)

Decoupled Animations
defn selection-sort (xs) :
 val N = length(xs)
 for s in 0 to (N - 1) do :
 ;Find minimum
 var min-i = s
 var min-v = xs[s]
 for i in (s + 1) to N do :
 if xs[i] < min-v :
 min-i = i
 min-v = xs[i]

 ;Swap
 if min-i != s :
 xs[min-i] = xs[s]
 xs[s] = min-v

machine-animate(selection-sort)

Concurrent Animations

side-by-side-animate(
 machine-animate{insertion-sort}
 machine-animate{quick-sort})

Nested Animations

tv-animate(
 machine-animate{insertion-sort}
 animate{quick-sort}
 animate{selection-sort})

Game Framework

play-game()

Programmatic Macros
❖ Stanza’s general mechanism for syntactic abstraction.

Please run

Bleh

whenever I type

Blah

Unless Macro

unless x :
 do-this()
 do-that()

if not x :
 do-this()
 do-that()

defrule exp4 = (unless ?p:#exp : ?body:#exp) :
 parse-syntax[core / #exp](
 fill-template(`(if not x : y), [
 `x => p
 `y => body]))

Switch Macro
switch(x) :
 a : body1
 else : body2

if x == a : body1
else : body2

defrule exp4 = (switch(?x:#exp) :
 ?a:#exp : ?b1:#exp
 else : ?b2:#exp) :
 val template = `(
 if x == a : body1
 else : body2)
 parse-syntax[core / #exp](
 fill-template(template, [
 `x => x
 `a => a
 `body1 => b1
 `body2 => b2]))

Internal Languages
defresolver resolve-exp (e:IExp, eng:Engine) :

 ;Resolve top level expressions
 resolve te :
 IDefType: {args:+, parent:t, children:te}
 IDef: (type:t, value:e)
 IDefVar: (type:t, value:e)
 IDefn: {targs:+, args:+, a1:t, a2:t, body:e}

 ;Resolve Stanza expressions
 resolve e :
 Let: (def:e, body:e)
 LetRec: (defns:f+, defns:f, body:e)

 ...

Start a new
scope

New Binders

Follow the “e”
resolution rulesFunctions are first defined

before resolved.

Internal Languages

❖ Stanza’s binder resolution phase is 207 lines using the
defresolver macro.

❖ Expands to about 2000 lines of Stanza code.

External Languages

❖ JitPCB is just a collection of Stanza macros.
❖ Some other languages written/writing/will write in our

lab:
❖ Chipper (essentially JitRTL)
❖ VMLang (essentially Jit - Virtual Machine)
❖ Allure (essentially JitGUI)

Leveraging Talent
❖ Small team of high-talent programmers. How do you compete?
❖ Macros allow you to trade off:  

 High Quantity Work  
 for:  
 High Difficulty Work

❖ Work smarter not harder:
❖ Less Code
❖ Less Bugs
❖ More Consistent
❖ Easier to Change
❖ Easier to Extend

